(3.236.6.6) 您好!臺灣時間:2021/04/22 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡政勳
研究生(外文):Cheng-Shiun Tsai
論文名稱:單一微粒自動控制化懸浮系統發展之研究
論文名稱(外文):Development of Single Particle Automatic Suspension and Measurement System
指導教授:林文印林文印引用關係
指導教授(外文):Wen-Yinn Lin
口試委員:曾昭衡蘇春熺陳志傑鄭福田
口試委員(外文):Chao-Heng TsengChih-Chieh ChenFu-Tien Jeng
口試日期:2007-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境規劃與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:單一微粒懸浮系統雙環型電極LabVIEW軟體
外文關鍵詞:particlesuspension measurement systemaerosol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
多數的懸浮微粒都帶有電荷。在電場中,帶有高電荷的微粒所受到的靜電力可高達其重力的數千倍。這種靜電力可用於補集氣體中的微粒。微粒的帶電量受到相當多因素的影響,這些因素包括:充電時間、離子濃度、微粒粒徑、電場強度、微粒之介電係數、離子的特性、以及溫度等等。
本研究利用雙環型電極之氣膠懸浮系統來研究環境中的單一微粒。電動力平衡由鑲有直流電極與交流電極的圍場所組成,經過適當充電的微粒可被捕集在圍場中的局部區域。單一微粒的多數特徵和特性可以藉由氣膠懸浮系統來進行研究,它是利用直流和交流電場把微粒固定在一空間中。單一微粒的化學反應也能利用單一微粒懸浮系統來進行實驗。對於球狀的微米微粒和液滴來說,亦可利用氣膠懸浮系統並搭配光散射、折射原理來計算出微粒的尺寸。
本研究已建構完成一套完整的單一微粒懸浮系統。並利用LabVIEW軟體建立儀控系統,搭配高解析度顯微相機做影像處理進一步達到自動控制單一微粒的目的。自動化控制的完成將有利於後續研究。此外,散射光的強度可以在入射光角度相差1°即有100倍誤差的可能,即表示光學模式在模擬散射光強度 時解析度不夠,可利用氣膠懸浮系統將解析度提高到0.1°,得到散射光強度實驗值。並利用氣膠懸浮系統觀察特定粒徑單一微粒的帶電量分布可能性,只要知道所捕捉微粒的粒徑,便可直接得知微粒本身的帶電量。
Few research only focus on single particulate, most aerosol study on a group of particle. Aerosol suspension measurement system in this studying is focus on single particulate by using double ring electrode. The electric field with electronic force balances is formed by DC and AC field. The charged particulate can be trapped on area within electron field. Most symbols and characteristics of single particle can be studied by aerosol suspension measurement system.
This research will study that trapped particle in AC and DC field and to probe into particle diameter. This system can measure the basic characteristic of the particle, like temperature and the humidity effect on particle. The optical properties also importance to the particle. Gas-particle chemical reactions can also be explored by EDB.
中文摘要I
英文摘要Ⅱ
誌 謝Ⅲ
表 目 錄VI
圖 目 錄VII
第一章 緒論1
1.1研究背景1
1.2研究目的2
第二章 文獻回顧3
2.1氣膠懸浮系統的種類與型式 3
2.2氣膠懸浮系統機制5
2.2.1氣懸微粒之粒徑與形狀6
2.2.2瑞利散射6
2.2.3光的散射7
2.2.4拉曼散射9
2.2.5相對濕度9
2.3微粒產生方法比較10
2.4微粒自動化控制16
2.4.1 LabVIEW環境介紹16
2.4.2 PID控制理論16
2.5生物氣膠20
2.6相關研究22
第三章 研究方法與設備23
3.1研究架構與流程23
3.2實驗系統25
3.3微粒產生系統28
3.4微粒自動化控制系統29
3.4.1人機介面(front panel)30
3.4.2程式方塊圖(block diagram)30
3.4.3圖示及連結器(icon and connector)32
3.4.4影像信號的處理32
3.5微粒特性量測系統35
3.5.1 探討以不同角度的入射光對微粒散射光強度之影響35
第四章 結果與討論 37
4.1氣膠懸浮系統的完成37
4.2自動控制化導入氣膠懸浮系統38
4.3不同角度的入射光對單一微粒之散射光強度影響39
4.4單一微粒之帶電量分布40
第五章 結論與建議 41
5.1結論41
5.2建議42
參考文獻43
[1]Aardahl, C. L., Vehring, R., Davis, E. J., Schweiger, G. and Swanson, B. D. (1997a) Trapping two-particle arrays in a double-ring electrodynamic balance. J. Aerosol Sci. 28, 1491}1505.
[2]Aardahl, C. L., Vehring, R., Weber, R., Schweiger, G., Davis, E. J. and Wiedensohler, A. (1997b) Electrodynamic trapping of aerocolloidal particles: experimental and theoretical trapping limits. J. Colloid Interface Sci. 192, 228}237.
[3]Ansari, A.S., Pandis, S.N., 2000. Water absorption by secondary organic aerosol and its e!ect on inorganic aerosol behavior. Environmental Science and Technology 34, 71}77.
[4]Christopher L. Aardahl, Reinhard Vehring, Ralf Weber, Gustav Schweiger, E. James Davis, and Alfred Wiedensohler, 1997, Electrodynamic Trapping of Aerocolloidal Particles: Experimental and Theoretical Trapping Limits. Journal of Colloid And Interface Science 192, 228-237 No. CS975023.
[5]Cruz, C.N., Pandis, S.N., 1998. The e!ect of organic coatings on the cloud condensation nuclei activation of inorganic atmosphere aerosol. Journal of Geophysical Research 103 (D11), 13111}13123.
[6]Chak K. Chan, Richard C. Flagan and John H. Seinfeld, 1998, In Situ Study of Single Aqueous Droplet Solidification of Ceramic Precursors Used for Spray Pyrolysis. Journal of American Ceramic Society, 81, 3; ProQuest Science Journals.
[7]Dick, W.D., Saxena, P., McMurry, P.H., 2000. Estimation of water uptake by organic compounds in submicron aerosols measured during the southeastern aerosol and visibility study. Journal of Geophysical Research 105 (D1), 1471}1479.
[8]Decesari, S., Facchini, M.C., Fuzzi, S., Tagliavini, E., 2000. Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. Journal of Geophysical Research 105 (D1), 1481}1489.
[9]Davis, E. J., & Schweiger, G. (2002). The airborne microparticle: it’s physics, chemistry, optics, and transport phenomena. Heidelberg: Springer.
[10]Hinds, William C. 1999, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles. John-Wiley & Sons, New York.
[11]I.N. Tang, K.H. Fung, D.G. Imre, H.R. Munkelwitz, Aerosol Sci. Tech. 23 (1995) 443.
[12]J. Musick, J. Popp, W. Kiefer 1998, Raman spectroscopic and elastic light scattering investigations of chemical reactions in single electrodynamically levitated microparticles. Journal of Molecular Structure 480–481 (1999) 317–321.
[13]Kerminen, V.-M., Teinila, K., Hillamo, R., Pakkanen, T., 1998,. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29 (8), 929}942.
[14]Laucks, M. L., Roll, G., Schweiger, G. and Davis, E. J. (2000) Physical and chemical (Raman) characterization of bioaerosols*pollen. J. Aerosol Sci. 31, 307}319.
[15]Maurice A. Jarzembski and Dragana V. Tankosic, 2003, Discharge of negatively charged micrometer size particles in an electrodynamic balance due to radioactivity. Journal of Aerosol Science.
[16]P.W. Barber, S.C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, 1990.
[17]Pruppacher, H. R.; Klett, J. D. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
[18]Svenningsson, B., Hansson, H.-C., Wiedensohler, A., Ogren, J., Noone, K., 1992. Hygroscopic growth of aerosol particles in the Po Valley. Tellus 44B, 556}569.
[19]Sto¨ckel, P. Homogene Nukleation in leVitierten Tro¨pfchen aus stark unterku¨hltem H2O und D2O. Ph.D. Thesis, Freie Universita¨t Berlin, 2001.
[20]Yukio Sakagami, Hiroki Yoshida, Tomohito Terasawa, Takahumi Fuseya, Takayuki Kondo, Hitoshi Senga, Fukutaro Mayumi, Kenji Murase. 2003, Non-contact suspension techniques for pellets in laser fusion experiments. Fusion Englineering and Design. 407-412.
[21]Zhang, Y., Chan, C.K., 2000. Study of contact ion pairs of supersaturated magnesium sulfate solutions using Raman scattering of levitated single droplets. Journal of Physical Chemistry A 104(40), 9191}9196.
[22]LabVIEW Basics I Course Manual, National Instruments, 1999.
[23]S. Srinivasan, M. Bodruzzaman, A. Shirkhodaie and M. Malkani, “LabVIEW program design for on-line data acquisition and predictive maintenance,” IEEE Proceedings of Thirtieth Southeastern Symposium on System Theory, pp. 520-524, 1998.
[24]J. G. Tseng, K. H. Huang and T. C. Fan, “Design of PID controller for DC servomotor systems,” Academic Bulletin of Chinese Naval Academy. Vol. 8, pp. 46-59, 1997.
[25]J. H. Cavalcanti, “Intelligent control system using PID and neural controllers,” Proceedings on 38th Midwest Symposium on Circuits and Systems, vol. 1, pp. 425-428, 1996.
[26]LabVIEW Data Acquisition Course Manual, National Instruments, 1999.
[27]王秋森,氣懸膠技術學。國立台灣大學醫學院出版委員會出版,頁:74-81,1993。
[28]詹煜銘,奈米微粒於薄膜過濾下之負載特性研究,碩士論文,國立台灣大學環境工程研究所,台北,2006。
[29]蕭子健,儲昭偉,王智昱編譯,LabVIEW基礎,高立圖書有限公司,1998。
[30]黃煌翔,介面技術原理與應用,全華科技圖書股份有限公司,1998。
[31]林宸生,影像與語音處理數位信號,全華科技圖書股份有限公司,2003。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔