(3.227.235.183) 您好!臺灣時間:2021/04/13 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡昇佑
研究生(外文):Sheng-You Tsai
論文名稱:染料敏化奈米太陽能電池研製與效率量測
論文名稱(外文):Manufacture of dye-sensitized nano solar cells and their efficiency measurements
指導教授:丁振卿
指導教授(外文):Chen-Ching Ting
口試委員:鐘清枝李靖男
口試日期:2007-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:100
中文關鍵詞:太陽能電池染料TiO2光電效率量測儀掃描式吸收光譜分析儀
外文關鍵詞:Solar cellsdyeTiO2instrument for measurements of photoelectric conversion efficiencyscanning absorption spectrum analyzer
相關次數:
  • 被引用被引用:9
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化奈米太陽能電池的研製,主要針對四項組成元件:光電極、染料、電解質及反電極進行研究,探討不同材料對效率所造成的影響。在光電極方面,幾種不同奈米顆粒薄膜中,以ZnO表現出最差的光電轉換能力,TiO2的兩種晶型光電轉換特性差異不大。當燒結溫度越高,電池的光電轉換效率明顯上升,其中以加熱至450C的光電轉換效率較佳。在染料方面,本研究以隔水加熱粹取天然植物的染料進行研究,並以未加染料的情形相比較,結果顯示,對於擁有較高類胡蘿蔔素的植物而言,具有較佳的光電轉換效率且添加染料能大幅提升光電轉換效率,而增強的光電轉換效率與染料的吸收光譜有關。染料濃度對敏化奈米太陽能電池光電轉換特性並無明顯影響。若以Chlorophyll
和Alizarin、Alizarin Red及Alizarin Yellow多種染料製備成混合染料使用,所製成的太陽能電池,其光電極從陽極變為陰極,反電極則轉換成陽極,形成一個反向迴路。在電解質方面,以液態電解液為主,為I_2、KI及Propylenecarbonate的混合溶液。在反電極製作上,比較各種金屬~(非貴重金屬)與非金屬材料,以含碳電極擁有較佳的光電轉換特性。以碳黑及石墨兩種碳類材料混合,當碳黑的比例越高時,所呈現的光電轉換效率就越高。為提高碳電極附著力而混合少量半導體粉末時,明顯提高短路電流。製作時將碳電極
,持續燒結三十分鐘,在染料敏化電池光電特性表現上,以燒結至450C時得到較好的光電轉換效率與填充因子。在進行各部份元件的研究探討上,主要以光電池的效率為基準,本實驗自組光電效率量測儀及掃描式吸收光譜分析儀,對於太陽能電池效率量測方面,所使用的太陽光模擬燈源,以複金屬燈之光譜與太陽光的光譜最為接近,其中在紫光與藍光區段的符合性最高;另外,掃描式吸收光譜分析儀主要在進行單色光掃描,目前已能分離製作出11種不同的窄頻光做為量測光源用。
The manufacturing process of dye-sensitized nano solar cells was focused on the four main constituents, which are the photoelectrode, the dye, the electrolyte, and the counter electrode. The photoelectrode: In comparison with some photoelectrodes show that the $ZnO$ photoelectrode has poor photoelectric conversion efficiency as well as the two different kinds of TiO2 crystals photoelectrodes have higher photoelectric conversion effiecencies and slight difference each other. The results show that the higher sintering temperature of photoelectrode is, the higher photoelectric conversion efficiency is. The best effective sintering temperature of photoelectrode in this work is 450C. The dye: This work applied the natural dyes, which were extracted from the plants using the indirect hydronic heating method. The results show that the higher
contents of carotene for dyes are, the higher photoelectric
conversion efficiencies are. The photoelectrodes with dyes are compared with the no-dyes photoelectrodes and receives that the dyes can promote the photoelectric conversion efficiency. The added photoelectric conversion efficiency is related to absorption spectrum of the dyes. The obvious influence of dyes concentration was not found in this work. The application of mixed dyes with chlorophyll, Alizarin, Alizarin Red, and Alizarin Yellow will cause the solar cell''s inverse current during shining. The electrolyte uses the liquid mixture of I2, KI, and Propylenecarbonate. The counter electrode: In comparison with various metal and non-metal materials receives the results that the carbon made electrodes have the better photoelectric conversion efficiencies. The manufacture of carbon counter electrode normally uses the mixture of carbon black and graphite as originl materials.The carbon electrode used semiconductor powder as additive to enhance the adhesion each other. The mixed carbon electrode will be sintered in 30 minutes and the sintering temperature of 450c has the better photoelectric conversion efficiency in this work. The mixture show the results that the higher ratio of carbon black is, the better photoelectric conversion efficiency and the fill factor are. An strument for measurements of photoelectric conversion efficiency and a scanning absorption spectrum analyzer, which used a metal halide lamp asthe light source due to its better fitted spectrum on the purple and blue fields with the solar spectrum, are built in the work. The scanning absorption spectrum analyzer has already created 11
kinds of light with narrow range frequency.
中文摘要 I
英文摘要 IV
誌謝 V
目錄 VIII
表目錄 IX
圖目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 基礎理論 7
2.1 太陽能電池的性能評估 7
2.1.1 開路電壓與短路電流 7
2.1.2 I-V曲線與填充因子(Fill factor) 7
2.1.3 總光電轉換效率與單色光光電轉換效率 7
2.2 染料敏化太陽能電池 10
2.2.1 電池組成與光電轉換原理 10
2.2.2 奈米半導體電極 12
2.2.3 敏化染料 14
2.2.3.1 物質對光的吸收 15
2.2.3.2 用於染料敏化太陽能電池的染料 17
2.2.4 電解質 20
2.2.5 反電極 20
2.3 光譜與光譜儀原理 21
2.3.1 光的吸收 21
2.3.2 光譜 22
2.3.3 基本架構 22
2.3.3.1 色散系統 22
2.3.3.2 色散原理 23
第三章 實驗方法與步驟 28
3.1 實驗材料與設備 28
3.1.1 材料 29
3.1.2 實驗設備 30
3.2 奈米光電板製作 32
3.2.1 製程步驟 32
3.2.1.1 導電玻璃的清洗 32
3.2.1.2 二氧化鈦凝膠製備與塗佈 32
3.2.1.3 染料萃取 34
3.2.1.4 製備反電極 34
3.2.1.5 電解質調配與封裝 36
3.3 染料吸收光譜量測 37
3.3.1 量測步驟 37
3.3.2 燈源選擇 38
3.3.3 溶劑 39
3.3.4 比色槽 39
3.4 I-V曲線量測 40
3.4.1 模擬燈源選擇 40
3.4.2 系統架設 40
3.5 掃描式吸收光譜儀架設 41
3.5.1 準直與色散系統架設 41
3.5.2 單色光擷取與放大 41
第四章 實驗結果與討論
4.1 光源之光譜量測 46
4.1.1 太陽光譜量測 46
4.1.2 模擬燈源測試與比較 47
4.1.2.1 鎢絲燈與鹵素燈 47
4.1.2.2 日光燈 47
4.1.2.3 複金屬燈 48
4.2 奈米半導體薄膜 51
4.2.1 不同材料的奈米半導體薄膜對染料敏化奈米太陽能電池之電性分析 51
4.2.2 奈米半導體薄膜不同燒結溫度對染料敏化奈米太陽能電池的電性分析 53
4.3 染料 57
4.3.1 不同染料對染料敏化奈米太陽能電池的電性分析 57
4.3.2 單色光之光電轉換效率分析 60
4.3.2.1 單色光製作 60
4.3.2.2 單色光轉換效率分析 60
4.3.3 染料濃度對染料敏化奈米太陽能電池的電性分析 62

4.3.4 混合染料對染料敏化奈米太陽能電池的電性分析 66
4.3.4.1 單一染料 66
4.3.4.2 混合染料 69
4.4 反電極 70
4.4.1 不同反電極製作之光電池的電性比較 71
4.4.1.1 未照光之電性分析 71
4.4.1.2 照光之電性分析 74
4.4.2 不同組合比例之碳系材料電極對光電池的影響 76
4.4.2.1 石墨與碳黑的混合 76
4.4.3 碳系材料添加其他元素之電極 80
4.4.4 碳電極燒結溫度 80
4.5 間隙片(Spacer) 82
4.6 光源強度 84
第五章 結論 89
第六章 未來展望 92
參考文獻 100
1.Energy Information Administration,International Energy Outlook 2007,Washington:U.S. Department of Energy, 2007, pp. 29-58.
2.黃啟峰,二氧化碳與地球暖化,科學發展,第四百一十三期,2007,第6-12頁。
3.朱信、簡聰文,燃燒與空氣污染,科學發展,第三百五十五期,2002,第18-21頁。
4.施顏祥等編著,能源技術-如何有效使用能源,台北市:聯經出版事業公司,1985,第10-25頁。
5.李文興、顏文治,向太陽借能量-熱能應用,科學發展},2004,第三百八十三期,第44-49頁。
6.雷永泉等編著,新能源材料,台北縣:新文京開發出版股份有限公司,2004,第277-461頁。
7.R.Memming and B.Tributsch,"Electrochemical Investigations on the Spectral Sensitization of Gallium Phosphide Electrodes," The Journal of Physical Chemistry, vol.75,no.4,1971,pp.562.
8.B.O Regan and M.Gratzel,"A low-cost,high-efficiency solar cells based on dye-sensitized colloidal TiO2 films,"Nature,vol.353,1991,pp.737-740.
9.Y.C.Shen,L.Wang,Z.Lu,Q.Zhou,H.Mao,and H.Xu,"Fabrication, characterization and photovoltaic study of a TiO2 microporous electrode,"Thin Solid Film", vol. 257,
1995, pp. 144-146.
10.崔曉莉、江志裕,納米TiO2製備方法,化學進展,第十四卷,第五期,2002,第325-331頁。
11.劉春平等人,染料敏化太陽能電池中的納米TiO2多孔膜研究進展,化工時刊,第十九卷,第八期,2005,第35-39頁。
12.M.K.Nazeeruddin,A.Kay,I.Rodicio,R.H.Baker,E.Miiller,
P.Liska,N.Vlachopoulos,and M.Gratzel,"Conversion of light
to electricity by cis-X_2Bis(2,2''-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X =C1-,Br-,I-,CN-,and SCN-) on nanocrystalline TiO2 electrodes,"J. Am. Chem.Soc.,vol.115,no.14,1993,pp.6382-6390.
13.Y.Li,J.Hagen,W.Schaffrath,P.Otschik,and D.Haarer,"Titanium dioxide films for photovoltaic cells derived from a solDgel process,"Solar Energy Materials and Solar Cells,"vol.56,1999,pp.167-174.
14.M.Gomez,J.Rodrimguez,S.Tingry,A.Hagfeldt,S.E.Lindquist, and C.G.Granqvist,"Photoelectrochemical effect in dye sensitized,sputter deposited Ti oxide films:The role of
thickness-dependent roughness and porosity,"Solar Energy
Materials and Solar Cells, vol. 59, 1999, pp. 277-287.
15.M. Okuya,K.Nakade,and S.Kaneko,"Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.70,2002, pp.425-435.
16.M.Krunks,and E.Mellikov,"Zinc oxide thin filmsby the spray pyrolysis method,"Thin Solid Films,vol.270,1995,pp. 33-36.
17.L.D. Kadam, and P.S. Patil, "Studies on electrochromic properties of nickel oxide thin lms prepared by spray pyrolysis technique,"Solar Energy Materials and Solar Cells,vol.69,2001,pp.361-369.
18.J.M.Ortega, A.I.Martinez,D.R.Acosta,and C.R. Magana,"Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis,"Solar Energy Materials and Solar Cells,vol.90,2006,pp.2471-2479.
19.G.K.Mor,K.Shankar,M.Paulose,O.K.Varghese,and C.A.Grimes,"Use of highly-ordered TiO2 nanotube arrays in
dye-sensitized solar cells,Nano Letters,vol.6,no.2,2006, pp.215-218.
20.M.Adachi,Y. Murata,J.Takao,J.Jiu,M.Sakamoto,and F.Wang,"Highly efficient dye-sensitized solar cells with a
titania thin-film electrode composed of a network tructure of single-crystal-like TiO2 nanowires made by the oriented
attachment mechanism,"J.AM.CHEM.SOC.,vol.126,2004,pp.14943-14949.
21.M.Matsumura,S.Matsudaira,and H.Tsubomura,"Dye sensitization and surface structures of semiconductor
electrodes,"Ind.Eng.Chem.Prod.Res.Dev.,vol.19,1980,pp.415-421.
22.K.Keis,E.Magnusson,H.Lindstrom,S.E.Lindquist,and A.Hagfeldt,A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes,Solar Energy Materials and Solar Cells,vol.73,2002,pp.51-58.
23.R.Katoh,A.Furube,T.Yoshihara,K.Hara,G.Fujihashi,S. Takano,S.Murata,H.Arakawa,and M.Tachiya,"Efficiencies of
electron injection from excited N3 dye into nanocrystalline
semiconductor (ZrO2,TiO2,ZnO,Nb2O5,SnO2,In2O3)films,"J.Phys. Chem. B,vol.108,2004,pp.4818-4822.
24.M.K.Nazeeruddin,P.Pechy and M.Gratzel,"Efficient
panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex,"Chem.Commun.,1997,pp.1705-1706.
25.M. Gratzel,"Perspectives for Dye-sensitized
nanocrystalline solar cells,"Prog.Photovolt.Res.Appl.,
vol.8,2000,pp.171-185.
26.M. Gratzel,"Dye-sensitized solar cells,"Journal of Photochemistry and Photobiology C:Photochemistry Reviews, vol.4,2003,pp.145-153.
27.S.Hao,J.Wu,Y.Huang and J.Lin,"Natural dyes as
photosensitizers for dye-sensitized solar cell,"Solar
Energy,vol.80,2006,pp.209-214.
28.A.S.Polo,and N.Y.M. Iha,"Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba,"Solar Energy Materials and Solar
Cells,vol.90,2006,pp.1936-1944.
29.K.Tennakone,G.R.R.A.Kumara,I.R.M.Kottegoda,V. P. S. Perera,G.M.L.P.Aponsu,and K.G.U.Wijayantha,"Deposition of thin conducting films of CuI on glass,"Solar Energy Materials and Solar Cells,vol.55,1998,pp.283-289.
30.P.M.Sirimanne,T.Shirata,T.Soga,and T.Jimbo,"Charge generation in a dye-sensitized solid-state cell under
different modes of illumination,"Journal of Solid State
Chemistry,vol.166,2002,pp.142-147.
31.A. Kay and M.Gratzel,"Low cost photovoltaic modules
based on dye sensitized nanocrystalline titanium dioxide and carbon powder,"Solar Energy Materials and Solar Cells},vol.44,1996,pp.99-117.
32.A.Hauch,and A.Georg,"Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,"Electrochimica Acta,vol.46,2001, pp. 3457-3466.
33.T.N.Murakami,S.Ito,Q.Wang,M.K.Nazeeruddin,T.Bessho,I. Cesar,P.Liska,R.H.Baker,P.Comte,P.Pechy,and M.Gratzelz,"Highly efficient dye-sensitized solar cells
based on carbon black counter electrodes,"Journal of The
Electrochemical Society,vol.153,no.12,2006,pp.A2255-A2261.
34.T.Hino,Y.Ogawa and N.Kuramoto,"Preparation of
functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell,"Carbon,vol.44,2006,pp.880-887.
35.J.Desilvestro,M.Gratzel,L.Kaven,and J.Moser,"Highly efficient sensitization of titanium dioxide,"J.AM.Chem.Soc,vol.107,1985,pp.2988.
36.高峰等人,染料敏化納米晶TiO2太陽能電池研究進展,廣州化工,第三十四卷,第一期,第8-11頁。
37.G. P. Smestad,"Education and solar conversion:Demonstrating electron transfer,"Solar Energy Materials and Solar Cells,vol.55,1998,pp.157-178.
38.莊嘉琛編譯,太陽能工程-電池偏,台北市:全華科技圖書股份有限公司,1997,第2-11,3-20頁。
39.G.Boyle,Renewable Energy,Stock:Oxford University Press, 2004,pp.89-136.
40.L.A.A.Pettersson,L.S.Roman,and O.Inganas,"Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,"Journal of Applied Physics, vol. 86, 1999, pp.487-496.
41.A.Olea,G.Ponce,and P.J.Sebastian,"Electron transfer via organic dyes for solar conversion,"Solar Energy Materials and Solar Cells,vol.59,1999,pp.137-143.
42.D.Cahen,G.Hodes,M.Gratzel,J.F.Guillemoles,and I.
Riess,"Nature of photovoltaic action in dye-sensitized solar cells,"J. Phys. Chem.,vol.104,2000,pp.2053-2059.
43.A.B.Kashyout,M.Soliman,M.El Gamal, and M.Fathy,"Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells,"Materials Chemistry and Physics,vol.90,2005,pp.230-233.
44.G.Srnestad,"Testing of dye sensitized TiO2 solar cells II:Theoretical voltage output and photoluminescence efficiencies,"Solar Energy Materials and Solar Cells,vol. 32,1994,pp.273-288.
45.Michael Gratzel,"Photoelectrochemical cells,"Nature, vol.44,no.15,pp.338-344.
46.A.L.Linsebigler,G.Lu,and J.T.Yates,"Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results," Chem.Rev.,vol.95,1995,pp.735.
47.陳軍等編著,新能源材料,台北市:五南圖書出版股份有限公司,2004,第15-64頁。
48.Y.Wang,Y.Hao,H.Cheng,J.Ma,B.Xu,W.Li, and S.Cai,"The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+~-doped TiO2 electrode,"Journal of Materials Science,vol.34,1999,pp.
2773-2779.
49.S.Hore,C.Vetter,R. Kern,H.Smit,and A.Hinsch,"Influence of scattering layers on efficiency of dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.90,2006, pp.1176-1188.
50.S.Ngamsinlapasathian,T.Sreethawong,Y.Suzuki,S.Yoshikawa,"Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell,"Solar Energy Materials and Solar Cells,vol.2005,pp.269-282.
51.葛偉傑等人,染料敏化太陽能電池TiO2製備及多孔電極膜研究進展, 環境化學,第二十四卷,第六期,第726-730頁。
52.T.A.Heimer,S.T.D''Arcangelis,F.Farzad,J.M.Stipkala,and
G.J.Meyer,"An acetylacetonate-based semiconductor-ensitizer
linkage,"Inorg. Chem.,vol.35,1996,pp.5319-5324.
53.葉育材編著,光合作用-植物生產力的生理基礎,台北市:國立編譯館,1982,第11-96頁。
54.N.J.Cherepy,G.P.Smestad,M.Gratzel,and J.Z.Zhang,"Ultrafast electron injection:implications for a
photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode,"J.Phys.Chem.B, vol.101,1997,pp.9342-9351.
55.Q.Dai,and J.Rabani,"Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes,Journal of Photochemistry and Photobiology A:Chemistry,vol.148,2002, pp.17-24.
56.張勝凱,觀賞鳳梨花青素分析之研究,碩士論文,國立屏東科技大學農園生產系,屏東,2005。
57.M.Guo,P.Diao,Y.J.Ren,F.Meng,H.Tian,and S.M.Cai,"Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes,"Solar Energy Materials and Solar Cells,vol.88,2005,pp.23-35.
58.陳炳輝,類胡蘿蔔素的特性與應用,科學發展月刊,第二十八卷,第八期,2000,第599-604頁。
59.吳謀成編著,儀器分析,北京:科學出版社,2003,第6-43頁。
60.A.J.Frank,N. Kopidakis,and J.V.D.Lagemaat,"Electrons in nanostructured TiO2 solar cells:transport,recombination and photovoltaic properties,"Coordination Chemistry Reviews,vol.248,2004,pp.1165-1179.
61.馬振基編著,奈米材料科技原理與應用,台北市:全華科技圖書股份有限公司,2003,第2-15~2-17頁。
62.盧永坤編著,奈米科技概論,台中市,滄海書局,2005,第14-58頁。
63.A.K.Jana,"Solar cells based on dyes,"Journal of Photochemistry and Photobiology A:Chemistry,vol.132,1999, pp.1-17.
64.H.Lindstrom,A.Holmberg,E.Magnusson,S.E.Lindquist,L. Malmqvist,and A.Hagfeldt,"A new method for manufacturing
nanostructured electrodes on plastic substrates,"Nano
Letter,vol.1,no.2,2001,pp.97-100.
65.K.Imoto,K.Takahashi,T.Yamaguchi,T.Komura,J.Nakamura,and K.Murata,"High-performance carbon counter electrode for dye-sensitized solar cells,"Solar Energy Materials and Solar Cells,vol.79,2003,pp.459-469.
66.賴耿陽編著,碳材料化學與工學,台南市:復漢出版社,1991,第~7-10、199-121~頁。
67.李景虹編著,先進電池材料,中國北京市:化學工業出版社,2004,第179-194頁。
68.李全臣等編著,光譜儀器原理,中國北京市:北京理工大學出版社,1999,第~18-49、190-221~頁。
69.S.S.Likhodii,I.Serbanescu,M.A.Cortez,P.Murphy,O.C.Snead III,and W.M.Burnham,"Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet,"Annals of
Neurology,vol.54,2003,pp.219-226.
70.李鳳生等編著,微奈米粉體後處理技術及應用,中國北京市:國防工業出版社,2005,第~12-47~頁。
71.閻子峰編著,納米催化技術,中國北京市:北京工業出版社,2003,第~28-117~頁。
72.曾仁傑,葡萄皮中花青素最佳粹取條件之評估及其經驗模式之建立},碩士論文,國立屏東課技大學食品科學系,屏東,2002。
73.常建華等編著,波譜原理及解析,北京:科學出版社,2005,第23-24頁。
74.方惠群等編著,儀器分析學習與指導,中國北京市:科學出版社,2004,第167-177頁。
75.宋明俊,複金屬燈特性研究,碩士論文,國立中山大學電機工程學系,高雄,2000。
76.M. Sugiura,"Review of metal-halide discharge-lamp development 1980-1992,"IEE Proceedings A,vol.140,1993,pp. 443-449.
77.許明晃,甘藷葉片色素含量與反射光譜關係之研究,博士論文,國立台灣大學農藝學系,台北,2003。
78.V.P.S.Perera,P.K.D.D.P.Pitigala,M.K.I.Senevirathne,and K.Tennakone,"A solar cell sensitized withth ree different dyes,"Solar Energy Materials and Solar Cells,vol.85,2005, pp.91-98.
79.W.R.Duncan,W.M.Stier,and O.V.Prezhdo "Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin-TiO2 interface,"J.AM.CHEM. SOC.,vol.127,2004,pp.7941-7951.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔