跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:偕睿仁
研究生(外文):Jiuan-Ren Jei
論文名稱:以鎳取代白金作為DMFC之膜電極組觸媒的比較研究
論文名稱(外文):The Study of Ni catalysts for replacing Pt catalysts in MEA of DMFC
指導教授:林啟瑞林啟瑞引用關係蘇春熺
口試委員:張宏宜林昇佃
口試日期:2007-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:含浸法奈米碳管奈米鎳粉乙二醇還原法
外文關鍵詞:Impregnation MethodCarbon NanotubeNickel Nanopowder
相關次數:
  • 被引用被引用:4
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究是使用含浸法(Impregnation Method)製備Pt/CNT和Ni/CNT及使用奈米鎳粉(Nickel Powder)做為直接甲醇燃料電池(DMFC)的陰陽極觸媒。將常使用的觸媒載體碳黑(Vulcan XC-72)以奈米碳管取代,此因奈米碳管擁有比碳黑更高的比表面積(specific surface area),範圍約在50~1315m2/g之間變化,而碳黑(Vulcan XC-72)約250m2/g。白金觸媒的製備是使用三次含浸法及乙二醇還原法,以乙二醇還原法所製備之白金觸媒較好,其平均粒徑為8.9 nm,且依此法所製備之觸媒重現性佳。對乙二醇還原法所製備之白金觸媒數量及粒徑尺寸進行統計及分析,可得知碳管管徑大上的觸媒其粒徑大小分布較廣,且各個碳管上之觸媒平均粒徑隨著管徑變大而變大。鎳觸媒部分則是購買平均粒徑35 nm的鎳粉,與奈米碳管混合作為電極觸媒用。當陽極為鎳,陰極為白金時,無穩定電流產生。當陽極為白金,陰極為鎳時,在0.1 V時有0.125 mA/cm2的穩定電流產生。在鎳觸媒部分加入Au做改善,結果在0.1 V時,電流密度提昇至0.375 mA/cm2,在電位部分也提昇至0.3 V,電流密度為0.025 mA/cm2,在量測電池性能的過程中發現,電池效能會隨著量測的次數增加而有一個最佳值,之後電池效能又會隨著量測次數的增加而遞減,所以我做了一次連續量測60次的實驗,每10次取一個平均值來觀察及比較,結果發現,在31~40次的平均值中,其電池效能最好,所以若要得知自製之MEA的真正效能,可使用多次量測法找出最好且真正的I-V性能曲線圖。
This research is based on Impregnation Method which applies Pt/CNT、Ni/CNT and apply nickel powder as catalyst for anode/cathode. By substitute CNTs for Vulcan XC-72 for it has a higher specific surface area which ranges from 50~1315 m2/g. However, for Vulcan XC-72 is only about 250 m2/g. we use Three times impregnation and the polyol reduction process to prepare Platinum catalyst. For the preparation of the polyol reduction process can reach a better efficient which has the average particle diameter about 8.9 nm. Beside, the ability of preparation to reach the same result is very high. To analysis the particle size and the amount of platinum catalyst, we can acknowledge that the dispersion of catalyst on the CNTs diameter is very wide. Futhermore, the average catalyst particle on each CNTs is getting larger as the diameter goes up. Ni catalyst is the nickel powder which has the average particle diameter of 35 nm which is used to mix with CNTs as electrode catalyst. When we apply Ni as anode platinum as cathode, there is no stable current occur. On the other hand, when we apply platinum as anode and Ni as cathode, there is a stable current which is about 0.125 mA/cm2 occurs at 0.1 V. when we add Au to improve, the current density raise up to 0.375 mA/cm2 at 0.1 V. For the voltage is rising up to 0.3 V, the current density reaches0.025 mA/cm2. During the process of measuring the ability of battery, the battery efficient reaches a best value as the measuring time increase. Afterwards, the battery efficient reduces as the measuring time increases. For a 60times measuring, the average value of battery reaches a best result at measuring times of 31-40. If we really need to know the true efficient of MEA, we can find the I-V curve through rising up the times measurement.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 序論 1
1.1 前言 1
1.2 燃料電池的歷史 1
1.3 燃料電池的種類 2
1.3-1鹼性燃料電池(AFC) 3
1.3-2磷酸燃料電池(PAFC) 3
1.3-3熔融碳酸鹽燃料電池(MCFC) 3
1.3-4固態氧化物燃料電池(SOFC) 4
1.3-5質子交換膜燃料電池(PEMFC) 4
1.3-6直接甲醇燃料電池(DMFC) 5
1.4 電池的構造及關鍵元件 8
1.4-1 質子交換膜 8
1.4-2 陰極觸媒部分 11
1.4-3 陽極觸媒部分 11
1.5 研究動機與目的 12
第二章 原理與文獻回顧 14
2.1直接甲醇燃料電池工作原理 14
2.1-1 甲醇電催化氧化機制 17
2.2 電池的極化現象 19
2.3 相關文獻探討 22
2.3-1 觸媒的製備 22
2.3-2 氯離子的影響 24
2.3-3 觸媒載體 24
2.3-4奈米碳管 25
2.3-5 觸媒漿料製作 29
2.3-6 膜電極組(MEA)的製備 29
2.3-7 質子交換膜與觸媒結合的方式 29
2.3-8氣體擴散層和觸媒之結合技術 30
2.3-9 奈米碳管表面改質 32
2.3-10 鎳觸媒 33
2.3-11 金觸媒 35
第三章 實驗方法與步驟 36
3.1 藥品與材料 36
3.2 實驗設備 37
3.3 實驗方法及流程 38
3.3-1 質子交換膜Nafion®117前處理 39
3.3-2 觸媒製備 40
3.3-3 觸媒漿料及氣體擴散層電極製備 41
3.3-4 熱壓法製備膜電極組(MEA) 42
3.4 電池放電測試 42
3.5 分析檢測之方式 46
3.5-1 X光繞射分析(X-ray Differaction,XRD) 46
3.5-2穿透式電子顯微鏡(Transmission Microscope,TEM) 47
3.5-3 掃瞄式電子顯微鏡 (SEM) 48
3.5-4 X光光電子能譜儀 (XPS) 51
3.5-4 能譜儀分析(EDS) 52
第四章 結果與討論 53
4.1 觸媒載體之選擇 53
4.2 比較不同製備方式之觸媒分析 59
4.2-1 白金觸媒製備方式 59
4.2-2 奈米碳管管徑對觸媒粒徑尺寸之分析 60
4.2-3 鎳觸媒製備方式 61
4.3 電池放電性能測試 77
4.3-1 不同觸媒製備方式之性能比較 77
4.3-2 觸媒漿料改質之比較 82
第五章 結論 84
參考文獻 85
[1]Carrette, L., Friedrich, K.A., Stimming, U., CHEMPHYSCHEM, 1, 2000, pp162.
[2]V. A. paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer and E.R.Gonzalez,“Modelistic interpretation of the impedance reponse of a polymer electrolyte fuel cell”, Electrochimica Acta, vol.43,1998 , pp3761.
[3]黃鎮江,燃料電池,全華科技圖書出版,2005。
[4]鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期,1995,161 頁。
[5]O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem. , vol. 22, 1992, pp995.
[6]E. A Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, “Methods to Advance Technology of Proton Exchange MembraneFuel Cells” J. Electrochemical. Soc., vol. 135, 1998, pp2209.
[7]鄭煜騰、鄭耀宗,質子交換模型燃料電池的製造技術,能源季刊,第二十七卷 第二期,1997,118 頁。
[8]左峻德,台灣燃料電池產業發展策略之研究,財團法人台灣經濟研究院,2001。
[9]K. Scott, W.M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”,J. Power Sources, vol. 79, 1999,pp43.
[10]E. A Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochemical. Soc., vol. 135, 1998, pp.22093.
[11]A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, 1989.
[12]Arico, A. S., Srinivasan, S., and Antonucci, V., Fuel Cells, 1, 2001, pp133.
[13]Z. Ogumi, T. Kuroe, Z. I. Takehara, J. Electrochem. Soc., vol.132,1985, pp2601.
[14]H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “PulseAmperometric Sensor for the Measurement of Atmospheric HydrogenPeroxide”, Analytical Chem., Vol. 68 (13), 1996, pp2026.
[15]J. S. Do. And R. Y. Shieh,“Electrochemical Nitrogen Dioxide GasSensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators,B37(1-2),1996, pp19 .
[16]E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan,“Methods to Advance Technology of proton Exchange MembraneFuel Cells” J. Electrochemical. Soc., vol. 135, 1998, pp2209.
[17]M. S. Wilson, S.Gottesfeld,“Thin-film catalyst layers of polymer150electrolyte fuel cell electrodes”, J. Appl. Electrochemistry, 22, 1992,pp1.
[18]S. Y. Cha and W. M. Lee, “Performance of Proton ExchangeMembrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. ElectrochemicalSoc., vol. 146 (11), 1999, pp4055.
[19]Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, and MasahiroWatanabe, “Enhancement of the Electroreduction of Oxygen on PtAlloys with Fe, Ni, and Co”, J. Electrochemical Soc., vol. 146 (10), 1999, pp3750.
[20]Landsman, D. A., F. J. Luczak, U. S. Patent, 4, 316, 944 (1982).
[21]Luczak, F. J., A. D. Landsman, U. S. Patent, 4, 447, 506 (1984)
[22]Luczak, F. J., A. D. Landsman, U. S. Patent, 4, 677, 092 (1987)
[23]A. Hamnett, Catal. Today, 38, 1997, pp445.
[24]Shawn D. Lin and Ting-Chou Hsiao “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEMFC”, J. Phys. Chem. Nol.103, 1999, pp97-103.
[25]T. E. Shubina, M. T. M. Koper “Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces”, Electrochemical Acta Vol.47, 2002, pp3621-3628.
[26]Meng-Sheng Liao, Carlos R. Cabrera, Yasuyuki Ishikawa “A theoretical study of CO adsorption on Pt, Ru and Pt-M (M= Ru, Sn, Ge) clusters,” Surface Science Vol.445, 2000, pp267-282.
[27]William H. Lizcano-Valbuena, Valdecir A. Paganin , Carlos A.P.Leite,Fernando Galembeck, Ernesto R. Gonzalez,Electrochimica Acta 48 , 2003,pp3869-3878.
[28]M.-S. Lo’’ffler, H. Natter, R. Hempelmann, K. Wippermann, Electrochimica Acta.48 , 2003, pp3047-3051.
[29]Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, Young-Min Kim,Jae-Suk Lee, Yung-Eun Sung, Electrochimica Acta 48, 2003, pp2781-2789.
[30]William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R. Gonzalez, Electrochimica Acta 47, 2002, pp3715-3722.
[31]Itaru Honmaz and Takako Toda, Journal of The Electrochemical Society, 150(12), 2003, pp1689-1692.
[32]Jong-Ho Choi, Kyung-Won Park, Boo-Kil Kwon, and Yung-Eun Sung, Journal of The Electrochemical Society, 150(7), 2003, pp973-978.
[33]Peigney A, Laurent Ch, Flahaut E, et al., Carbon. 39, 2000, pp507
[34]Jackson, S. D.,F. J. Robertson, and J. Willis, “A Study of Copper/silica Catalysts: Reduction, Adsorption and Reaction”, J. Mol. Catal.,63, 1990, pp255.
[35]Z.D. Wei, S.H. Chan/Journal of Electroanalytical Chemistry 569, 2004, pp23-33.
[36]T. Freelink, W. Visscher, J. A. R. Van Veen, Surf. Sci., 335, 1995, pp353.
[37]M. P. Hogarth et al, Platinum Metals Rev. 46(4), 2002, pp146
[38]Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, andYung-Eun Sung “Nanoparticle Synthesis and Electrocatalytic Activityof Pt Alloys for Direct Methanol Fuel Cells”, Journal of TheElectrochemical Society, Vol. 149(10), 2002, pp1299.
[39]M. Gotz and H. Wendt”Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated onmethanol or reformate gas”, Electrochimica Acta, Vol. 43, 1998, pp3637.
[40]M.J. Escudero, E. Hontanon, S. Schwartz, M.Boutonnet, L.Daza, “Development and performance characterization of newelectrocatalysts for PEMFC”, Journal of Power Sources, Vol.106, 2002, pp206.
[41]B. Kenedy, A. Smith, J. Electroanal. Chem., Vol.293, 1990, pp103
[42]D. Boxall, G. Deluga, E. Kenik, W. King, C. Lukehart, “Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance”, Chem. Mater. Vol.891, 2001, pp13.
[43]E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, “APt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting HighRelative Performance as a Direct-Methanol Fuel Cell Anode Catalyst”,J. Phys. Chem. B., Vol.105(34), 2001, pp8097.
[44]Giovanni Neri, Candida Milone, Andrea Donato, Lucina Mercadante& A. Maria Visce “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol., Vol.60, 1994, pp83.
[45]A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon Catalyst for a Fuel Cell: A Preparation with Sorbitan Monolaurate”, J.Electrochem. Soc., Vol.137, 1990, pp2084.
[46]S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt and Pt-Ru electrodes: an on line MS study using technical electrodes”, Journal of Applied Electrochemistry, Vol.23, 1993, pp120.
[47]J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S. A Weeks “Porous Carbon Anodes For The Direct Methanol Fuel Cell-Ⅰ.The Role Of The Reduction Method For Carbon Supported PlatinumElectrodes”, Electrochimica Acta, Vol.35, 1990, pp199.
[48]A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell”, Electrochimica Acta, Vol.48, 2002, pp255.
[49]H. E. Van Dam and H. Van Bekkum “Preparation of Platium of Activated Carbon”, Journal of Catalysis, Vol.131, 1991, pp335.
[50]R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts for Methanol Fuel Cells”, Bulletin of Electrochemistry, 1993, pp352.
[51]R. Pattabiraman, Bulletin of Electrochemistry, 1993, pp352.
[52]H. Bonnemann et al., FUEL CELLS, 4(4), 2002
[53]T. R. Ralph, and M. P. Hogarth, Platinum Metal Rev., Vol. 46, 2002, pp146.
[54]A. Khazova, A. A. Mikhailova, A. M. Skundin, E. K. Tuseeva, A. Havranek, K.Wippermann , Fuel Cells , vol. 2, 2002, pp99.
[55]F. Rodriguez, Carbon, Vol. 36, 1998, pp159.
[56]T. Yoshitate, T. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi , Y. Kubo,D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima , Physica B ,Vol. 323, 2002, pp124-126.
[57]P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley. “Nanotube nanodevice.” Science, 278, 1997, pp100.
[58]M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff. “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.” Science, 287, 2000, pp637.
[59]P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 1. - Synthesis and characterization.” J. Mater. Chem, 6(4), 1996, pp573.
[60]P. Y. Silvert, R. Herrera-Urbina, N. Davauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen. “Preparation of colloidal silver dispersions by the polyol process. Part 2. – Mechanism of particle formation.” J. Mater. Chem, 7(2), 1997, pp293.
[61]J. Kong, N. R, Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al. “Nanotube molecular wires as chemical sensors.” Science, 287, 2000, pp622.
[62]Walt A. de Heer, A. Châtelain, and D. Ugarte. “A Carbon Nanotube Field-Emission Electron Source.” Science, 270, 1995, pp1179.
[63]K. Jurewicz, S. Delpeux, V. Bertagna, F. Béguin, and E. Frackowiak. “Supercapacitors from nanotubes/polypyrrole composites.” Chem. Phys. Lett, 347(1-3), 2001, pp36.
[64]H. Dai, J. H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley. “Nanotubes as nanoprobes in scanning probe microscopy.” Nature, 384, 1996, pp147.
[65]]T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, Chem. Commun. , 2004, pp840–841.
[66]H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, Carbon , 42 , 2004, pp191–197.
[67]Hansan Liu , Chaojie Song, Lei Zhang , Jiujun Zhang Haijiang Wang , David P.85 Wilkinson , Journal of Power Sources ,155 , 2006, pp95–110
[68]T. Yoshitate, T. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi , Y. Kubo,D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima , Physica B ,Vol. 323, 2002, pp124-126.
[69]Wenzhen Li, Changhai Liang, Jieshan Qiu, Weijiang. Zhou, Hongmei Han, Zhaobin Wei, Gongquan Sun, Qin Xin, Letters to the Editor/Carbon, Vol.40, 2002, pp787-803.
[70]Makoto Ucjida, Yuko Aoyama, Nobuo Eda, Akira Ohta, “New Preparation Method for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., vol. 142, 1995, pp 463.
[71]Tae-Hyun Yang, Gu-gon Park, perumal Pugazhendi, won-Yong Lee, Chang Soo Kim, “Performance Improvement of Electrode for Polymer Electrolyte Membrane Fuel Cell”, Korean J. Chem. Eng., vol. 19 (3), 2002, pp417.
[72]Mahlon S. Wilson and Shimshon Gottesfeld, “High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 139 (2), 1992, pp28.
[73]Mahlon S. Wilson, Judith A. Valerio and Shimshon Gottesfeld, “Low Platinum Loading Electrodes For Polymer Electrolyte Fuel Cell Fabricated Using Thermoplastic Ionomers”, Electrochimica Acta, Vol. 40, 1995, pp355.
[74]O’Hayre, Ryan; Lee, Sang-Joon; Cha, Suk-Won; Prinz, Fritz. B., ” A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, J. Power Source, Vol. 109, 2002, pp483.
[75]M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer electrolyte fuel cell electrodes” J. Appl. Electrochemistry, Vol. 22, 1992, pp1.
[76]杜景順,“高分子電解質燃料電池陰極合金電極之製備與氧氣還原動力”,行政院國家科學委員會補助專題研究報告,1994。
[77]R. Liu, W-H. Her, P. S. Fedkiw, “In Situ electrode formation on a Nafion membrane by chemical platinization”, J. Electrochem. Soc. Vol.139(1), 1992, pp15
[78]L. Giorgi, E. Antokini, A.Pozio, E. Passalacqua, “Influence of the PTFE content in the diffusion layer of low Pt loading electrodes for polymer electrolyte fuel cell”, Electrochimica Acta, Vol. 43(24), 1998, pp3675.
[79]C. K. Subramaniam, N. Rajalakshmi, K. Ramya, K. S. Dhathathreyan, “High Performance Gas Diffusion Electrodes for PEMFC”, Bulletin of Electrochemistry, Vol.16 (8), 2000, pp350.
[80]M. Wilson, S. Gottesfield, “High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells’, Journal of Electrochemical Society, Vol.139 (2), 1992, pp28.
[81]Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta, “New Preparation Method for Polymer-Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 142, 1995, pp463.
[82]D. BEVERS, N. WAGNER, M. VON BRADKE, “Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures”, International Journal of Hydrogen Energy, Vol.23 (1), 1998, pp57.
[83]Vaccarini, L., Goze, C., Aznar, R., Micholet, V., Journet, C., and Bernier, P., “Purification procedure of carbon nanotubes,” Synthetic Metals, 103, 1999, pp2492-2493.
[84]Dujardin, E., Ebbesen, T. W., Krishnan, A., and Treacy, M. J., “Purification of single-shell nanotubes,” Advanced Meterials, 10(8), 1998, pp611-613.
[85]徐以玲,水中銅、鎘重金屬離子於奈米碳管上之吸附研究,雲林科技大學環境與安全衛生工程研究所,碩士論文,2006。
[86]Porter, K. and Volman, D. H. Flame ionization detection of carbon monoxide for gas chromatographic analysis, Anal. Chem. 34, 1962, pp 748-749.
[87]R. S. Disselkamp, T. R. Hart, A. M. Williams, J. F. White, C. H. F. Peden, Ultrasonics Sonochemistry ,12, 2005, pp 319.
[88]Robert F. Service, “Platinum in Fuel Cell Gets Helping Hand”, Science, 2007, 315(5809), pp 172.
[89]黃政豪,以化學氣相沉積法製備碳鍍層及其在燃料電池金屬雙極板之應用,逄甲大學,碩士論文,2005。
[90]G. Neri, A. Bonavita and C. Milone, Sensors and Actuators B-Chemical, 93, 2003, pp 402.
[91]M. Shibata et al, Journal of Electroanalytical Chemistry ,194 , 1985, pp261
[92]K.E.Spear, M. Frenklach, A. Badzian, T. Badzian, R. Messier, “Vapor deposition of crystal diamond”, Ceram. Eng. Sci. Proc., vol 9 (9-10), 1988, pp1095
[93]I.Watanabe and K. Sugata, “Diamond film synthesized by microwave plasma CVD of ethyl alcohol, etc.”, Jpn. J. Appi. Phys, 27 (8), 1988, pp1397.
[94]Kurihara, L. K., Chow, G. M., Schoen, P. E., “Nanocrystalline Metallic Powders and Films Produced by the Polyol Method,” Nanostructured Materials, Vol. 5, 1995, pp607-613.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top