跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林崴士
研究生(外文):Wei-Shi Lin
論文名稱:整合可製造性設計方法於X時脈樹
論文名稱(外文):Integrated Methods of Design for Manufacturability for X-Architecture Clock Tree
指導教授:李宗演李宗演引用關係蔡加春蔡加春引用關係
指導教授(外文):Trong-Yen LeeChia-Chun Tsai
口試委員:李炯三方志鵬
口試委員(外文):Chiung-San LeeJyh-Perng Fang
口試日期:2007-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:134
中文關鍵詞:可靠性設計非曼哈頓繞線零時脈偏差時脈樹光學鄰接校正冗餘穿孔點X時脈樹
外文關鍵詞:DFMnon-Manhattan routingzero skewclock treeOPCredundant viaX-architecture clock tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
隨著製程科技的日新月異,製程元件的微小化賦予超大型積體電路製造極大的整合力,原先許多電子產品需靠繁雜電子電路與元件組成的,現今在奈米製程上都可很輕易的將整個系統整合在一顆晶片上。然而奈米製程卻深受電路效能與良率不佳的窘境,深究其因乃製程上的一些缺失諸如光學微影、新製程物質缺陷所致,因此可製造性設計的議題對於積體電路設計者與電子設計自動化為必須考量的關鍵因素。目前針對實體設計上考量可製造性設計的文獻已於近來急速增加,然對於時脈繞線上仍未有著墨,而已提出的繞線方法也難以整合於時脈繞線上。為此,本文提出金屬線段層次安排的方法,藉由衝突圖形的建立與尋求每一層金屬線段的最大獨立解,於X時脈繞線後改善光學鄰近上線段過近及減少穿孔點數量來提升良率與可靠度。實驗數據顯示此法可有效解決線段重疊與線段過近的問題並減少79.12%的穿孔點數量,除此之外,本文亦針對此法產生的副作用提出因應之法並對於可製造性設計提出一套整合之架構。
As the advanced process and shrinking feature size integrate more and more functions on one chip, accompaniments are the problems of lithography and material defects affecting the yield and quality of the chip beyond nanometer process. Via defects and congested wires are not beneficial for manufacturing in clock network and they should be avoided in the design. In this thesis, we refine these defects by layer assignment and formulate this assigning problem as conflict graph. The conflict graph is solved by maximum independent sets in each layer recursively and experimental results show almost 79.12% reduction rate of vias and 100% avoidance of all wires suffered in serious optical proximity effect in X architecture clock tree. In addition, we also evaluate the side effects and propose some strategies for the integration of design for manufacturability.
中 文 摘 要...............................................i
ABSTRACT................................................iii
誌 謝.....................................................v
Contents................................................vii
List of Tables...........................................xi
List of Figures........................................xiii
Chapter 1 INTRODUCTION....................................1
1.1 Motivation............................................2
1.2 Thesis Goals..........................................3
1.3 Thesis Organization...................................3
Chapter 2 BACKGROUND......................................5
2.1 Clock Networks........................................5
2.1.1 Delay Model.........................................7
2.1.2 Clock Tree Construction.............................8
2.1.3 Manhattan and Non-Manhattan Architecture...........13
2.1.4 Power Estimation...................................14
2.2 Lithography and Resolution Enhancement Techniques(RET)....................................................15
2.2.1 Phase-Shifting Mask (PSM)..........................17
2.2.2 Optical Proximity Correction (OPC).................18
2.3 New Materials and Manufacture Defects................20
2.3.1 Antenna Effect.....................................20
2.3.2 Interconnect Via...................................23
2.3.3 Chemical Mechanical Polishing (CMP)................26
Chapter 3 PROBLEM DEFINITIONS AND PROPOSED METHODS.......29
3.1 Problem Definitions..................................30
3.1.1 Excessive Vias.....................................31
3.1.2 Error Wires and OPE Wires..........................32
3.1.3 Input and Output...................................34
3.2 Proposed Methods.....................................35
3.2.1 Clock Tree Construction............................36
3.2.1.1 Sequenced Geometry Matching Algorithm (SGMA).....37
3.2.1.2 Locating Tapping Points (LTP)....................39
3.2.1.3 Algorithm........................................43
3.2.2 Via Minimization in Layer Assignment...............45
3.2.2.1 Construction of Conflict Graph...................45
3.2.2.2 Maximum Independent Sets.........................48
3.2.2.3 Discussion for Error Assignment..................52
3.2.2.4 Partition Long Wires to Use Layers Efficiently...54
3.2.3 Consideration for Optical Proximity Correction.....55
3.2.4 Redundant Via Insertion (RVI)......................57
3.2.5 Wire Sizing for Zero Skew..........................59
3.3 Side Effects and Strategies..........................64
3.3.1 Crises of Antenna Effect...........................64
3.3.2 Optical Proximity Correction Consideration.........67
3.3.3 Phase Conflict in Phase-Shifting Mask..............68
3.3.4 Irregularity of Chemical Mechanical Polishing......69
Chapter 4 EXPERIMENTAL RESULTS...........................71
4.1 Experimental Parameters..............................71
4.2 Clock Routing........................................73
4.2.1 GMA and SGMA.......................................74
4.2.1.1 Performance......................................76
4.2.1.2 Area and Power...................................76
4.2.1.3 Layer Usage and Via Counts.......................77
4.2.1.4 Executive Time...................................78
4.2.2 Locating Tapping Points............................78
4.2.2.1 Performance......................................79
4.2.2.2 Area and Power...................................80
4.2.2.3 Layer Usage and Via Counts.......................81
4.2.2.4 Executive Time...................................82
4.2.3 Different Architectures............................83
4.2.3.1 Performance......................................85
4.2.3.2 Area and Power...................................86
4.2.3.3 Layer Usage and Via Counts.......................89
4.2.3.4 Executive Time...................................92
4.2.4 Related Figures of Clock Routing...................93
4.3 Layer Assignment.....................................95
4.3.1 Error Wires and OPE Wires..........................99
4.3.2 Layer Usage and Via Issues........................101
4.3.3 Executive Time....................................103
4.3.4 T-junction in the Tapping Point...................104
4.3.5 Related Figures in Layer Assignment...............105
Chapter 5 CONCLUSION AND FUTURE WORK....................127
5.1 Conclusion..........................................127
5.2 Future work.........................................127
REFERENCES..............................................129
[1] J.-T. Kong, “CAD for Nanometer Silicon Design Challenges and Success,” IEEE Trans. VLSI, vol. 12, pp. 1132-1147, Nov. 2004.
[2] S. Raghvendra and P. Hurat, “DFM: Linking Design and Manufacturing,” Proc. VLSID, pp. 705-708, Jan. 2005.
[3] A. Balasinski, “DfM for SoC (Design-for-Manufacturability for System on a Chip),” Proc. IDEAS, pp. 41-46, July 2005.
[4] D. Sylvester, “Design for Manufacturability: Challenges and Opportunities,” Proc. ASIC, pp. 1169-1171, Oct. 2005.
[5] J. Xuemei, Z. Peiyong, S. Zheng, and Y. Xiaolang, “Design for Manufacturability of Sub-100 Nanometer Standard Cells,” Proc. EDSSC, pp. 833-836, Dec. 2005.
[6] R. Aitken, “DFM Metrics for Standard Cells,” Proc. ISQED, March 2006.
[7] H. K.-S. Leung, “Advanced Routing in Changing Technology Landscape,” Proc. ISPD, pp. 198-121, April 2003.
[8] L. K. Scheffer, “Physical CAD Changes to Incorporate Design for Lithography and Manufacturability,” Proc. ASP-DAC, pp. 768-773, Jan. 2004.
[9] C.-W. Lin, M.-C. Tsai, K.-Y. Lee, T.-C. Chen, T.-C. Wang, and Y.-W. Chang, “Recent Research and Emerging Challenges in Physical Design for Manufacturability/Reliability,” Proc. ASP-DAC, pp.238-243, Jan. 2007.
[10] L. R. Cazaux, K. Lucas, and J. Fitch, “Integration of Design for Manufacturability (DFM) Practices in Design Flows,” Proc. ISQED, pp.102-106, March 2005.
[11] J. Cong, A. B. Kahng, and G. Robins, “Matching-Based Methods for High Performance Clock Routing,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 1157-1169, Aug. 1993.
[12] W. C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers,” J. Applied Physics, vol. 19, pp. 55-63, 1948.
[13] A. I. Abou-Seido, B. Nowak, and C. Chu, “Fitted Elmore Delay: A Simple and Accurate Interconnect Delay Model,” IEEE Trans. VLSI, vol. 12, pp. 691-696, July 2004.
[14] Y. I. Ismail, E. G. Friedman, and J. L. Neves, “Equivalent Elmore Delay for RLC Trees,” IEEE Trans. Computer-Aided Design, vol.19, pp. 83-97, Jan. 2000.
[15] T.-C. Chen, S.-R. Pan, and Y.-W. Chang, “Timing Modeling and Optimization Under the Transmission Line Model,” IEEE Trans. VLSI, vol.12, pp. 28-41, Jan. 2004.
[16] X.-C. Li, J.-F. Mao, and H.-F. Huang, “Accurate Analysis of Interconnect Trees with Distributed RLC Model and Moment Matching,” IEEE Trans. Microwave Theory and Techniques, vol. 52, pp. 2199-2206, Sept. 2004.
[17] C.-C. Tsai, J.-O. Wu, C.-C. Kuo, T.-Y. Lee, and W.-T. Lee, “Zero-Skew Driven for RLC Clock Tree Construction in SoC,” Proc. ICITA, pp. 561-566, July 2005.
[18] R.-S. Tsay, “An Exact Zero-Skew Clock Routing Algorithm,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 242-249, Feb. 1993.
[19] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng, “Zero Skew Clock Routing with Minimum Wirelength,” IEEE Trans. Circuits and Systems, vol. 39, pp. 799-814, Nov. 1992.
[20] A. Vittal and M. Marek-Sadowska, “Low-Power Buffered Clock Tree Design,” IEEE Trans. Computer-Aided Design, vol. 16, pp. 965-975, Sept. 1997.
[21] J. Oh and M. Pedram, “Gated Clock Routing for Low-Power Microprocessor Design,” IEEE Trans. Computer-Aided Design, vol. 20, pp. 715-722, June 2001.
[22] J. Pangjun and S. S. Sapatnekar, “Low-Power Clock Distribution Using Mutiple Voltages and Reduced Swings,” IEEE Trans. VLSI, vol. 10, pp. 309-318, June 2002.
[23] M. Pan, C. C.-N. Chu, and J. M. Chang, “Transition Time Bounded Low-power Clock Tree Construction,” Proc. ISCAS, pp. 2445-2448, May 2005.
[24] Y.-T. Nieth, S.-H. Huang, and S.-Y. Hsu, “Minimizing Peak Current via Opposite-Phase Clock Tree,” Proc. DAC, pp. 182-185, June 2005.
[25] M. Cho, S. Ahmed, and D. Z. Pan, “TACO: Temperature Aware Clock-tree Optimization,” Proc. ICCAD, pp. 582-587, Nov. 2005.
[26] B. Lu, J. Hu, G. Ellis, and H. Su, “Process Variation Aware Clock Tree Routing,” Proc. ISPD, pp. 174-181, April 2003.
[27] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical Clock Analysis Considering Intradie-Process Variation,” IEEE Trans. Computer-Aided Design, vol. 23, pp. 1231-1241, Aug. 2004.
[28] U. Padmanabhan, J. M. Wang, and J. Hu, “Statistical Clock Tree Routing for Robustness to Process Variations,” Proc. ISPD, pp. 149-156, April 2006.
[29] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing Clock Skew Variability via Crosslinks,” IEEE Trans. Computer-Aided Design, vol. 25, pp. 1176-1182, June 2006.
[30] T. Samanta, P. Ghosal, H. Rahaman, and P. Dasgupta, “A Heuristic Method for Constructing Hexagonal Steiner Minimal Trees for Routing in VLSI,” Proc. ISCAS, pp. 1788-1791, May 2006.
[31] E. Hursey, N. Jayakumar, and S. P Khatri, “Non-Manhattan Routing using a Manhattan Router,” Proc. VLSID, pp. 445-450, Jan. 2005.
[32] S. Ahmad, N. Jayakumar, and V. Balasubramanian, “X-Routing using Two Manhattan Route Instances,” Proc. ICCD, pp. 45-50, Oct. 2005.
[33] W. Shen, Y. Cai, J. Hu, X. Hong, and B. Lu, “High Performance Clock Routing in X-architecture,” Proc. ISCAS, pp. 2081-2084, May 2006.
[34] T. Terasawa, “Subwavelength Lithography (PSM, OPC),” Proc. ASP-DAC, pp.295-300, Jan. 2000.
[35] P. Berman, A. B. Kahng, D. Vidhani, H. Wang, and A. Zelikovsky, “Optimal Phase Conflict Removal for Layout of Dark Field Alternating Phase Shifting Masks,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 175-187, Feb. 2000.
[36] C. Chiang and A. B. Kahng, “Fast and Efficient Bright-Field AAPSM Conflict Detection and Correction,” IEEE Trans. Computer-Aided Design, vol. 26, pp. 115-126, Jan. 2007.
[37] K. Cao, P. Dhawan, and J. Hu, “Library Cell Layout with Alt-PSM Compliance and Composability,” Proc. ASP-DAC, pp. 216-219, Jan. 2005.
[38] K. McCullen, “Phase Correct Routing for Alternating Phase Shift Masks,” Proc. DAC, pp. 317-320, June 2004.
[39] L.-D. Huang and M. D. F. Wong, “Optical Proximity Correction (OPC)-Friendly Maze Routing,” Proc. DAC, pp. 186-191, June 2004.
[40] Y.-R. Wu, M.-C. Tsai, and T.-C. Wang, “Maze Routing with OPC Consideration,” Proc. ASP-DAC, pp. 198-203, Jan. 2005.
[41] D. Z. Pan and M. D. F. Wong, “Manufacturability-Aware Physical Layout Optimizations,” Proc. ICICDT, pp. 149-153, May 2005.
[42] J. Mitra, P. Yu, and D. Z. Pan, “RADAR: Ret-Aware Detailed Routing Using Fast Lithography Simulations,” Proc. DAC, pp. 369-372, June. 2005.
[43] H. Xiang, L.-D. Huang, K.-Y. Chao, and M. D. F. Wong, “An ECO Algorithm for Resolving OPC Coupling Capacitance Violations,” Proc. ASIC, pp. 784-787, Oct. 2005.
[44] P. Yu, S. X. Shi, and D. Z. Pan, “Process Variation Aware OPC with Variational Lithography Modeling,” Proc. DAC, pp. 785-790, June 2006.
[45] K. Cao, S. Dobre, and J. Hu, “Standard Cell Characterization Considering Lithography Induced Variations,” Proc. DAC, pp. 801-804, June 2006.
[46] W. Zhang, Y. Cai, Q. Zhou, and X. Hong, “Steiner Tree Based Routing Algorithm in Consideration of Optical Proximity Correction,” Proc. ICCCAS, pp. 2424-2428, June 2006.
[47] T.-C. Chen and Y.-W. Chang, “Multilevel Full-Chip Gridless Routing with Applications to Optical Proximity Correction,” IEEE Trans. Computer-Aided Design, 2006.
[48] J. Wang and H. Zhou, “Optimal Jumper Insertion for Antenna Avoidance under Ratio Upper-Bound,” Proc. DAC, pp. 761-766, June 2006.
[49] B.-Y. Su, Y.-W. Chang, and J. Hu, “An Exact Jumper-Insertion Algorithm for Antenna Violation Avoidance/Fixing Considering Routing Obstacles,” IEEE Trans. Computer-Aided Design, vol. 26, pp. 719-733, April 2006.
[50] D. Wu, J. Hu, and R. N. Mahapatra, “Antenna avoidance in layer assignment,” IEEE Trans. Computer-Aided Design, vol. 25, pp. 734-738, April 2006.
[51] L.-H. Huang, X. Tang, H. Xiang, D. F. Wong, and I.-M. Liu, “A Polynomial Time-Optimal Diode Insertion/Routing Algorithm for Fixing Antenna Problem,” IEEE Trans. Computer-Aided Design, vol. 23, pp. 141-147, Jan. 2004.
[52] P. H. Chen, “Beat the Competition: A Knowledge-Based Design Process Addressing the Antenna Effect and Cell Placement,” IEEE Circuits and Devices Magazine, vol. 20, pp. 18-27, May-June 2004.
[53] Y. Yang, T. Jing, X. Hong, Y. Hu, Q. Zhu, X. Hu, and G. Yan, “Via-Aware Global Routing for Good VLSI Manufacturability and High Yield,” Proc. ASAP, pp. 198-203, July 2005.
[54] C.-H. Wang and W.-K. Mak, “λ-Geometry Clock Tree Construction with Wirelength and Via Minimization,” Proc. VLSI-DAT, pp. 1-4, April 2007.
[55] N. Harrison, “A Simple Duplication Tool for Yield Enhancement,” Proc. DFT, pp. 39-47, Oct. 2001.
[56] G. A. Allen, “Targeted Layout Modifications for Semiconductor Yield/Reliability Enhancement,” IEEE Trans. Semiconductor Manufacturing, vol. 17, pp. 573-581, Nov. 2004.
[57] N. D. Arora, L. Song, S. M. Shah, K. Joshi,K. Thumaty, A. Fujimura, L. C. Yeh, and P. Yang, “Interconnect Characterization of X Architecture Diagonal Lines for VLSI Design,” IEEE Trans. Semiconductor Manufacturing, vol. 18,no. 2, pp. 262-271, May 2005.
[58] K.-Y. Lee and T.-C. Wang, “Post-Routing Redundant Via Insertion for Yield/Reliability Improvement,” Proc. ASP-DAC, pp.303-308, Jan. 2006.
[59] T.-Y. Lin, H.-H. Tung, M.-C. Wu, and R.-B. Lin, “Redundant-Via-Driven Standard Cell Library Design,” Proc. VLSI-CAD, pp. 473-476, Aug. 2006.
[60] G. Xu, L.-D. Huang, D. Z. Pan, and M. D. F. Wong, “Redundant-Via Enhanced Maze Routing for Yield Improvement,” Proc. ASP-DAC, pp. 1148-1151, Jan. 2005.
[61] H. Yao, Y. Cai, Q. Zhou, and X. Hong, “Multilevel Routing With Redundant Via Insertion,” IEEE Trans. Computer-Aided Design, vol. 53, pp. 1148-1152, Oct. 2006.
[62] K.-Y. Lee and T.-C. Wang “Post-Routing Yield/Reliability Improvement by Redundant Via Insertion with Via Density Consideration,” Proc. VLSI-CAD, pp. 429-432, Aug. 2006.
[63] F. Luo, Y. Jia, and W. W. Dai, “Yield-Preferred Via Insertion Based on Novel Geotopological Technology,” Proc. ASP-DAC, Jan. 2006.
[64] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, Lu. Chen, and B. Han, “Novel Full-Chip Gridless Routing Considering Double-Via Insertion,” Proc. DAC, pp. 755-760, July 2006.
[65] R. Tian, D. F. Wong, and R. Boone, “Model-Based Dummy Feature Placement for Oxide Chemical–Mechanical Polishing Manufacturability,” IEEE Trans. Computer-Aided Design, vol. 20, pp. 902-910, July 2001.
[66] R. Tian, X. Tang, and M. D. F. Wong, “Dummy-Feature Placement for Chemical-Mechanical Polishing Uniformity in a Shallow-Trench Isolation Process,” IEEE Trans. Computer-Aided Design, vol. 21, pp. 63-71, Jan. 2002.
[67] C.-H. Sui and H.-M. Chen, “A Faster and More Effective Min-Variance Dummy Feature Insertion for Chemical-Mechanical Polishing Manufacturability,” Proc. VLSI-CAD, pp. 469-472, Aug. 2006.
[68] M. Cho, D. Z. Pan, H. Xiang, and R. Puri, “Wire Density Driven Global Routing for CMP Variation and Timing,” Proc. ICCAD, pp. 487-492, Nov. 2006.
[69] J. Yang, E. Cohen, C. Tabery, N. Rodriguez, and M. Craig, “An Up-stream Design Auto-fix Flow for Manufacturability Enhancement,” Proc. DAC, pp. 73-76, July 2006.
[70] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, “Clock Routing for High Performance ICs,” Proc. DAC, pp. 573-579, June 1990.
[71] J. G. Xi and W. W.-M. Dai, “Useful-Skew Clock Routing With Gate Sizing for Low Power Design,” Proc. DAC, pp. 383-388, June 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top