(34.204.186.91) 您好!臺灣時間:2021/04/19 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施俊吉
研究生(外文):Chun-Chi Shih
論文名稱:新型濾波器與量測電路之設計與實現
論文名稱(外文):Design and Implementation of New Filters and Measurement Circuits
指導教授:黃育賢陳建中陳建中引用關係
口試委員:宋國明郭建宏
口試日期:2007-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:運算轉阻放大器四端點浮接同位等流器濾波器惠斯登電橋
外文關鍵詞:OTRA (operational transresistance amplifiers)FTFN (four-terminal floating nullors)FilterWheatstone Bridge
相關次數:
  • 被引用被引用:5
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究重點,是以運算轉阻放大器和四端點浮接同位等流器,配合濾波器的合成方法-線性轉換法,分別實現電壓模式和電流模式之高頻三階Chebychev低通濾波器,經由線性轉換法,可以利用查表的方式,系統化地將濾波器設計出來。用運算轉阻放大器為主動元件,所設計出的濾波器電路,其電阻用MOSFET電阻電路(MRCs)取代,故被動元件只剩電容,其濾波頻寬為100MHz、漣波為1dB,此電路採用台灣積體電路公司零點三五微米互補式金屬氧化物半導體製程與HSPICE模擬軟體,電源電壓為±1.65V。用四端點浮接同位等流器為主動元件,所設計出的濾波器電路,其中的四端點浮接同位等流器是用兩顆AD844 IC實現,此濾波頻寬為1MHz、漣波為1dB。
運算轉阻放大器的另一個應用,為電流模式惠斯登電橋。主要的想法是利用全差動式運算轉阻放大器的特性,配合三個精密電阻和一個未知電阻,經由輸出電壓差值來計算出未知電阻之數值,此電路的精確度可高達98%,且量測範圍可以隨著輸入電流和電阻調整。我們採用台灣積體電路公司零點三五微米互補式金屬氧化物半導體製程,電源電壓為±1.65V,直流輸入掃描範圍為±2mA,頻寬為277MHz,功率損耗為177.92mW,晶片面積(含PAD)為0.7866 × 1.0178 mm2。
The thesis aims at designing and implementing high-frequency voltage-mode and current-mode third-order Chebychev low-pass filters, using operational transresistance amplifiers (OTRA) and four-terminal floating nullors (FTFN) by linear transformation synthesis method. Through linear transformation, we can design the filter systematically with proposed design tables.
MOSFET resistor circuits are used to replace the resistors in the OTRA-based filters. As a result, the only passive components to be found in the filter are capacitors. The filter has a bandwidth of 100MHz with 1dB ripple and is implemented using TSMC 0.35μm CMOS process plus HSPICE simulation with a power supply of ±1.65V. The filter using FTFN which is implemented by two AD844 has a bandwith of 1MHz with 1dB ripple.
Another application of OTRA is the current-mode Wheatstone bridge. The main idea is to utilize the features of a fully differential OTRA and three precision resistors to measure one unknown resistor. Value of the resistor is calculated based on the output voltage, and precision of the circuit is as high as 98%. Moreover, the measuring range is adjustable by regulating the input current and the resistors.
The Wheatstone bridge is implemented using TSMC 0.35μm CMOS process with a power supply of ±1.65V. The DC input sweep range is ±2mA, the bandwidth 277MHz, the power consumption 177.92mW, and chip area with PAD included 0.7866×1.0178 mm2。
目 錄
中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 x
第一章 序論 1
1.1 相關研究發展現況 1
1.2 研究動機 4
1.3 論文主要架構 6
第二章 電壓模式之高階Chebychev低通濾波器 7
2.1 基本架構介紹 7
2.2 Nullor等效模型簡介 8
2.3 運算轉阻放大器 10
2.3.1 電路之理想模型 10
2.3.2 內部電路說明 11
2.3.3 MRC說明 12
2.4 四端點浮接同位等流器 13
2.4.1 電路之理想模型 13
2.4.2 內部電路說明 14
2.5 AD844運算放大器 15
2.6 電壓模式之線性轉換 17
2.6.1 基本原理介紹 17
2.6.2 以運算轉阻放大器為基礎之線性轉換表格 21
2.6.3 以四端點浮接同位等流器為基礎之線性轉換表格 24
2.7 電壓模式之高階低通濾波器設計步驟 27
2.8 以運算轉阻放大器合成之Chebychev低通濾波器 28
2.9 以四端點浮接同位等流器所合成之Chebychev低通濾波器 31
2.10 模擬與量測結果 33
2.10.1 運算轉阻放大器模擬結果 33
2.10.2 運算轉阻放大器佈局後模擬結果 37
2.10.3 晶片佈局圖 40
2.10.4 晶片測試考量 42
2.10.5 規格列表 42
2.10.6 晶片量測結果 43
2.10.7 以運算轉阻放大器所合成之Chebychev低通濾波器模擬結果
46
2.10.8 使用AD844做成之四端點浮接同位等流器所合成之Chebychev
低通濾波器量測結果 49
第三章 電流模式之高階Chebychev低通濾波器 51
3.1 基本架構介紹 51
3.2 電流模式之線性轉換 52
3.2.1 基本原理介紹 52
3.2.2 以運算轉阻放大器為基礎之線性轉換表格 56
3.3 電流模式之高階低通濾波器設計步驟 59
3.4 以運算轉阻放大器所合成之Chebychev低通濾波器 60
3.5 以運算轉阻放大器所合成之Chebychev低通濾波器模擬結果 63
第四章 使用全差動運算轉阻放大器設計量測電路 65
4.1 基本架構介紹 65
4.2 全差動運算轉阻放大器 66
4.2.1 電路之理想模型 66
4.2.2 內部電路說明 67
4.3 用全差動運算轉阻放大器實現電流模式惠斯登電橋電路 69
4.4 非理想狀態之電流模式惠斯登電橋電路 71
4.5 模擬與量測結果 74
4.5.1 全差動運算轉阻放大器模擬結果 74
4.5.2 電流模式惠斯登電橋模擬結果 75
4.5.3 考慮佈局後的寄生效應所得到之電流模式惠斯登電橋模擬結
果 76
4.5.4 晶片佈局圖 78
4.5.5 晶片測試考量 80
4.5.6 規格列表 80
4.5.7 晶片量測結果 82
第五章 結論與未來展望 87
5.1 結論 87
5.2 未來展望 88
參考文獻 89
附錄A
Accepted by VLSI CAD 2007
“A NEW CURRENT-MODE WHEATSTONE BRIDGE BASED ON FULLY DIFFERENTIAL OPERATIONAL TRANSRESISTANCE AMPLIFIERS”94
參考文獻
[1].B. Wilson, “Recent developments in current conveyors and current-mode circuits, ” IEE Proceedings Circuits, Device & Systems, vol. 137, no. 2, pp. 63 – 77, Apr. 1990.
[2].S. I. Liu, and D. S. Wu, “New current-feedback amplifier-based universal biquadratic filter, ” IEEE Trans. on Instrumentation and Measurement, vol. 44, no. 4, pp. 915 – 917, Aug. 1995.
[3].Nil Tarim and Hakan Kuntman, “A High Performance Current Differencing Buffered Amplifier,”The 13th International Conference on Microelectronics, pp. 153-156, Oct. 2001.
[4].S. Ozcan, H. Kuntman and O. Cicekoglu, “Cascadable current mode multipurpose filters employing CDBA,”AEU Int. J. Electron Commun, vol. 56, no. 2, pp. 67 – 72, 2002.
[5].U. Cam, A. Toker, and H. Kuntman, “CMOS FTFN realization based on translinear cells,” Electronics Letters, vol. 36, no. 15, pp. 1255 - 1256, July 2000.
[6].U. Cam, and H. Kuntman, “A new CMOS realization of a four terminal floating nullor (FTFN),” International Journal of Electronics , vol. 87, no. 7, pp. 809 - 817, July 2000.
[7].H. Alzaher, and M. Ismail, “A CMOS fully balances four-terminal floating nullor,” IEEE Tran. on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no. 4, pp. 413 - 424, April 2002.
[8].J. J. Chen, H. W. Tsao, and C. C. Chen, “Operational transresistance amplifier using CMOS technology,” Electronics. Letters Vol. 28, No. 22, pp. 2087-2088, Oct. 1992.
[9].K. N. Salamaa, and A. M. Soliman, “CMOS operational transresistance amplifier for analog signal processing,” Microelectronics Journal, vol. 30, no. 3, pp. 235 - 245, 1999.
[10].V. Riewruja, J. Parnklang, and A. Julprapa, “Current tunable CMOS operational transresistance amplifier,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1328 - 1338, June. 2001.
[11].A. Ravindran, A. Savla, I. Younus, and M. Ismail, “A 0.8V CMOS filter based on a novel low voltage operational transresistance amplifier,” IEEE Midwest Symposium on Circuits and Systems, Aug. 2002, pp. 368-371.
[12].C. Toumazou, A. Payne and S. Pookaiyaudom, “The active-R filter technique applied to current-feedback op-amps,” ISCAS, vol. 2, pp. 1203 – 1206, May, 1995.
[13].J. M. Bryant, “How not to design an active filter-thoughts on the choice of op-amps,” IEE 15th SARAGA Colloquium on Digital and Analogue Filters and Filtering Systems, pp. 3/1 - 3/5, 30, Nov. 1995.
[14].L. Chongxin, L. Jian and L. Lin, “New current-version negative-feedback biquad filter using op amp,” IEEE Asia-Pacific Conference on Circuit and Systems, pp. 723 – 726, Digital Object Identifier 10.1109/APCCAS.2000.913622, Dec. 2000.
[15].K. C. Smith and A. Sedra, “The current conveyor—A new circuit building block,” Proceedings of the IEEE, vol. 56, no. 8, pp. 1368 – 1369, Aug. 1968.
[16].A. Sedra and K. Smith, “A second-generation current conveyor and its applications,” IEEE Transaction on Circuits and Systems, vol. 17, no. 1, pp. 132 – 134, Feb. 1970.
[17].李榮彬,以差動差分電流傳輸器設計高階主動濾波器及其應用,碩士論文,國立台北
科技大學電腦與通訊研究所,台北,2006。
[18].J. Wu and E. El-Masry, “Current-mode ladder filters using multiple output current conveyors,” IEE Proceedings Circuits, Device & Systems, vol. 143, no. 4, pp. 218 – 222, Aug. 1996.
[19].C. Premont, N. Abouchu, R. Grisel and J. P. Chante, “A current conveyor-based high-frequency analog switch,” IEEE Transactions on Circuits and Systems, vol. 45, no. 3, pp. 298 – 300, March, 1998.
[20].A. A. Khan, S. Bimal, K. K. Dey and S. S. Roy, “Novel RC sinusoidal oscillator using second-generation current conveyor,” IEEE Transaction on instrumentation and measurement, vol. 54, no. 6, pp. 2402 - 2406, Dec. 2005.
[21].C. Galanis and I. Haritantis, “An improved current mode instrumentation amplifier,” Proceedings of the Third IEEE International Conference on Electronics, Circuits, and Systems, vol. 1, pp. 65 – 68, Oct. 1996.
[22].A. K. Anwar, B. Sadanand, K. K. Dey and S. S. Roy, “Current conveyor based R and C multiplier circuits,” International Journal of Electronic and Communication, vol. 56, no. 5, pp. 312-316, 2002.
[23].H. Dimopoulos and A. Constantinides, “Linear transformation active filters,” IEEE Transaction on Circuits and Systems, vol. 25, no. 10, pp. 845 – 852, Oct. 1978.
[24].P. Brackett and A. Sedra, “Direct SFG simulation of LC ladder networks with applications to active filter design,” IEEE Transaction on Circuits and Systems, vol. 23, no. 2, pp. 61 – 67, Feb. 1976.
[25].D. Dubois and J. Neirynck, “Synthesis of a leapfrog configuration equivalent to an LC-ladder filter between generalized terminations,” IEEE Transaction on Circuits and Systems, vol. 24, no. 11, pp. 590 – 597, Nov. 1977.
[26].Y. S. Hwang, P. T. Hung, W. Chen and S. I. Liu, “CCII-based linear transformation elliptic filters,” Int. J. Electronics, vol. 89, no. 2, pp. 123-133, 2002.
[27].Y. S. Hwang, S. I. Liu, D. S. Wu and Y. P. Wu, “Table-based linear transformation filters using OTA-C Techniques,” Electronics Letters, vol. 30, no. 24, pp. 2021-2022, 1994.
[28].Y. S. Hwang, W. Chiu, S. I. Liu, D. S. Wu and Y. P. Wu, “High-frequency linear transformation elliptic filters employing minimum number of OTAs,” Electronics Letters, vol. 31, no. 18, pp. 1562-1564, 1995.
[29].Y. S. Hwang, P. T. Hung, W. Chen and S. I. Liu, “Systematic generation of current-mode Linear transformation filters based on multiple output CCIIs,” Analog Integrated Circuits and Signal Processing, vol. 32, pp. 123-134, 2002.
[30].S. C. Wheatstone, “An account of several new instruments and processes for determining the constants of a voltaic circuit,” Philos. Trans. R. Soc. Lond., vol. 133, pp. 303-329, 1843.
[31].U. Kaempf, “The Wheatstone bridge as an alignment test structure,” Microelectronic Test Structures, vol. 8, pp. 27-32, Mar. 1995.
[32].S. Ekelof, “The genesis of the Wheatstone bridge,” Engineering Science and Education Journal, vol. 10, no. 1, pp. 37-40, Feb. 2001.
[33].A. P. Singh, T. S. Kamal, amd S. Kumar, “Development of ANN-BasedVirtual Fault Detector for Wheatstone Bridge-Oriented Transducers,” IEEE Sensors Journal, vol. 5, no. 5, pp. 1043-1049, Oct. 2005.
[34].L. Hebrard, J. B. Kammerer, and F. Braun, “A Chopper Stabilized Biasing Circuit Suitable for Cascaded Wheatstone-Bridge-Like Sensors,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 52, no. 8, pp. 1653 – 1665, Aug. 2005.
[35].K. I. Lee, H. Takao, K. Sawada, and M. Ishida, “Analysis and experimential verification of thermal drift in a constant temperature control type Three-Axis accelerometer for high temperatures with a novel composition of Wheatstone Bridge,” IEEE International Conference on Micro Electro Mechanical Systems, 2004, pp. 241 – 244.
[36].Th. Eick, and R. Mattheis, “Noise measurements of Wheatstone Bridges made from spin valves with parallel and crossed anisotropies,” IEEE International Diqest of Technical Papers, May 2002, pp. EW14.
[37].J. Mc Dermott, “Sensors and Transducers,” Electron. Des. News, mar.20, pp. 122-142, 1980.
[38].Y. Kanda, “Optimum design considerations for silicon pressure sensors using a four-terminal gauge,” Sensors and Actuators, vol. 4, no. 2, pp. 199 - 206, 1983.
[39].Y. Kanda, and A. Yasukawa, “Hall-effect devices as strain and pressure sensors,” Sensors and Actuators, vol. 2, pp. 283 - 296, July 1982.
[40].吳瑞欽,積體化MOSFET差動放大、補償電路壓力感測器特性之製作及應用研究,
碩士論文,國立海洋大學電機工程學系暨研究所,基隆,2000。
[41].羅明山,積體化CMOS OP放大、補償電路壓力感測器特性之製作及應用研究,碩士
論文,國立海洋大學電機工程學系暨研究所,基隆,2001。
[42].陳閔超,壓阻式微懸臂樑感測元件之製作與研究,碩士論文,國立雲林科技大學電子
與資訊工程研究所,嘉義,2004。
[43].H. Sasaki, H. Nishinaka, and K. Shida, “Automated measurement system for 1-Ω standard resistors using a modified Wheatstone bridge,” IEEE Transaction on instrumentation and measurement, vol. 40, no. 2, pp. 274 - 277, Apr. 1991.
[44].B. P. Kibble, and D. J. Legg, “A generalized Wheatstone bridge for comparing 1-Ω resistors,” IEEE Transaction on instrumentation and measurement, vol. IM-34, pp. 282 - 284, Apr. 1985.
[45].Y. H. Ghallab and W. Badawy, “A new current- mode Wheatstone bridge,” IEEE Trans. on circuits and Systems –II: Express Briefs, Vol. 53, No. 1, pp. 18-22, Jan. 2006.
[46].S. J. Azhari and H. Kaabi, “AZKA cell, the current- mode alternative of Wheatstone bridge,” IEEE Trans. on circuits and Systems –I: Fundamental Theory and applications, Vol. 47, No. 9, pp.1277-1284, Sep. 2000.
[47].Y. H. Ghallab and W. Badawy, “A New Design of a Current-mode Wheatstone Bridge Using Operational Floating Current Conveyor,” The 2006 International Conference on MEMS, NANO and Smart Systems, Dec. 2006, pp. 41-44.
[48].Y. H. Ghallab, M. Abo El-Ela, and M. H. Elsaid, “Operational floating current conveyor: characteristics, modeling and experimental results,” International Conference on Microelectronics, vol.2, May. 1994, pp. 788-791.
[49].A. A. Khan, M. A. Al-Turaigi, and M. Abo El-Ela, “Operational floating current conveyor: characteristics, modeling and applications,” Instrumentation and Measurement Technology Conference, 1994, pp. 788-791.
[50].Y. S. Hwang, J. J. Chen, and W. T. Lee, “High-order linear transformation MOSFET-C filters using operational transresistance amplifiers,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3275 - 3278, May 2005.
[51].W. W. Chui, J. H. Tsay, S. I. Liu, H. W. Tsao, and J. J. Chen, “Single-capacitor MOSFET-C integrator using OTRA,” Electronics Letters, vol. 31, no. 21, pp. 1796-1797, Oct. 1995.
[52].Y. K. Lo, and H. C. Chien, “Current-Mode Monostable Multivibrators Using OTRAs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1274 - 1278, Nov. 2006.
[53].H. Y. Wang and C. T. Lee, “Realisation of R-L and C-D immittances using single FTFN,” Electronics Letters, vol. 34, no. 6, pp. 502 - 503, Mar. 1998.
[54].S. I. Liu, “Single-resistance-controlled sinusoidal oscillator using two FTFNs,” Electronics Letters, vol. 33, no. 14, pp. 1185 - 1186, July 1997.
[55].S. I. Liu, “Cascadable current-mode filters using single FTFN,” Electronics Letters, vol. 31, no. 23, pp. 1965 - 1966, Nov. 1995.
[56].H. Carlin, “Singular Network Elements,” IEEE Transaction on Circuits and Systems, vol. 11, no. 1, pp. 67 - 72, Mar. 1964.
[57].Analogue Devices, “AD844 data sheet,” 1990.
[58].A. D. Cuenca, L. O. Beltran, J. P. Talledo Vilela, J. C. Miranda, “Comparison of microstrain indicators measurements based on Anderson’s Loop and Wheatstone bridge,” IEEE International Conference on Electronics, Communications and Computers, Feb. 2006, paper no. 35.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔