|
REFERENCES [1.1] Department of Investment Services, MOEA, Taiwan, http://investintaiwan.nat.gov.tw/en/opp/semi_micro.html [1.2] J. A. Maiz, “Reliability challenges: preventing them from becoming limiters to technology scaling,” Keynote speech at IEEE International Integrated Reliability Workshop, California, USA, 2006. [1.3] K. Xiu and M. Ketchen, “Thermal modeling of a small extreme power density macro on a high power density microprocessor chip in the presence of realistic packaging and interconnect structure,” Electronic Components and Technology Conf., 2004, pp. 918-923. [1.4] J. Ahn, H. Kim, T. Kim, H. Shin, Y. Kim, D. Lim, J. Kim, U. Chung, S. Lee and K. Suh, “1GHz microprocessor integration with high performance transistor and low RC delay,” IEDM Tech. Dig., 1999, pp. 683-686. [1.5] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 110. [1.6] H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T, Morimoto, Y. Katsumata and H. Iwai, “A study of hot-carrier degradation in n- and p-MOSFETs with ultra-thin gate oxides in the direct-tunneling regime,” IEEE IEDM Tech. Dig., 1997, pp. 453-456. [1.7] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko and C. Hu, “Low-voltage hot electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657. [1.8] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305. [1.9] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466. [2.1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., USA: John Wiley & Sons, 1981, p. 184. [2.2] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, UK: Cambridge University Press, 1998, pp. 97-98. [2.3] M. V. Fischetti and S. E. Laux, “Understanding hot-electron transport in silicon devices: Is there a shortcut? ” J. Appl. Phys., vol. 78, no. 2, 1995, pp. 1058-1087. [2.4] S. A. Abbas and R. C. Dockerty, “Hot-carrier instability in IGFET’s,’’ Appl Phys. Lett., vol. 27, 1975, pp. 147-148. [2.5] T. H. Ning, C. M. Osburn, and H. N. Yu, “Threshold instability in IGFET’s due to emission of leakage electrons from silicon substrate into silicon dioxide,” Appt. Phys. Lett., vol. 29, 1976, pp. 198-200. [2.6] T. H, Ning, P. W, Cook, R. H. Dennard, C. M. Osburn, S. E Schuster and H. N Yu, “1 μrn MOSFET VLSI technology: Part IV—Hot-electron design constraints,” IEEE Journal of Solid-State Circuits, vol. sc-14, no. 2, 1979, pp. 268-275. [2.7] W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electron., vol. 2, 1961, pp. 35-67. [2.8] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305. [2.9] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko and C. Hu, “Low-voltage hot electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657. [2.10] R. B. Fair and R. C. Sun, “Threshold-voltage instability in MOSFET’s due to channel hot-hole emission,” IEEE Trans. Electron Devices, vol. ED-28, Jan. 1981, pp. 83–94. [2.11] E. Takeda, A. Shimizu, and T. Hagiwara, “Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFET’s,” IEEE Electron Device Lett., vol. EDL-4, Sept. 1983, pp. 329-331. [2.12] K. R. Hofmann, C. Werner, W. Weber, and G. Dorda, “Hot-electron and hole-emission effects in short n-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-32, Mar. 1985, pp. 691-699. [2.13] Y. Leblebici, S. M. Kang, “Simulation of hot-carrier induced MOS circuit degradation for VLSI reliability analysis.” IEEE Trans. Reliability, vol. 43, no. 2, 1994, pp. 197-206. [2.14] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466. [2.15] K. Xiu and M. Ketchen, “Thermal modeling of a small extreme power density macro on a high power density microprocessor chip in the presence of realistic packaging and interconnect structure,” Electronic Components and Technology Conf., 2004, pp. 918-923. [2.16] J. Ahn, H. Kim, T. Kim, H. Shin, Y. Kim, D. Lim, J. Kim, U. Chung, S. Lee and K. Suh, “1GHz microprocessor integration with high performance transistor and low RC delay,” IEDM Tech. Dig., 1999, pp. 683-686. [2.17] T. Chen, C. Zhu, L. Najafizadeh, B. Jun, A. Ahmed, R. Diestelhorst, G. Espinel and J. D. Cressler, “CMOS reliability issues for emerging cryogenic lunar electronics applications,” Solid-State Electronics, vol. 50, 2006, pp. 959-963. [2.18] M. Song, K. P. MacWilliams and J. C. S. Woo, “Comparison of nMOS and pMOS hot carrier effects from 300 to 77 K,” IEEE Trans. Electron Devices, vol. 44, no. 2, 1997, pp. 268-276. [2.19] F. C. Hsu and K. Y. Chiu, “Temperature dependence of hot-electron-induced degradation in MOSFET''s,” IEEE Electron Device Lett., no. 5, 1984, pp. 148-150. [2.20] P. Aminzadeh, M. Alavi and D. Scharfetter, “Temperature dependence of substrate current and hot-carrier-Induced degradation at low drain bias,” IEEE Symp. VLSI Technology, 1998, pp. 178-179. [2.21] W. Wang, J. Tao and P. Fang, “Dependence of HCI mechanism on temperature for 0.18 um technology and beyond,” IEEE Int. Integrated Reliability Workshop, Final Report, 1999, pp. 66-68. [2.22] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Enhanced degradation of nMOSFET’s under hot carrier stress at elevated temperatures due to the length of velocity saturation region,” IEEE Int. Integrated Reliability Workshop, Final Report, 1994, pp. 69-72. [2.23] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Impact of velocity saturation region on nMOSFET’s hot carrier reliability at elevated temperatures,” IEEE IRPS, 1995, pp. 48-50. [2.24] H. Hwang, J. S.Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperature,” IEEE Electron Device Lett. vol. 16, no. 4, 1995, pp. 148-150. [2.25] L. Su, S. Subbanna, E. Crabbe, P. Agnello, E. Nowak, R. Schulz, S. Raugh, H. Ng, T. Newman, A. Ray, M. Hargrov, A. Acovic, J. Snare, S. Crowder, B. Chen, J. Sun and B. Davari, “A high performance 0.08 μm CMOS,” Technical Digest of Symposium on VLSI Technology, 1996, pp. 12- 13. [2.26] E. Li, E. Rosenbaum, J. Tao, G. C-F Yeap, M-R. Lin, and P. Fang, “Hot carrier effects in nMOSFETs in O.1pm CMOS technology,” IEEE International Reliability Physics Symposium, 1999, pp.253-258. [2.27] S. C. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidizes silicon surfaces,” IEEE Trans. Electron Devices, vol. ED-27, 1980, p. 1497-1508. [2.28] F. C. Hsu and S. Tam. “Relationship between MOSFET degradation and hot-electron-induced interface-state generation,” IEEE Electron Device Lett., vol. EDL-5, 1984, pp. 50-52. [2.29] J. E. Chung, P. K. Ko and C. Hu, “A model for hot-electron-induced MOSFET linear- current degradation based on mobility reduction due to interface-state generation,” IEEE Trans. Electron Devices, vol. 38, no. 6, 1991, pp. 1362-1370. [2.30] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 198. [2.31] J. G. Hwu, Special Topic on Oxide Reliability, Handout of the class in National Taiwan University, 2004. [4.1] P. Aminzadeh, M. Alavi and D. Scharfetter, “Temperature dependence of substrate current and hot-carrier-Induced degradation at low drain bias,” IEEE Symp. VLSI Technology, 1998, pp. 178-179. [4.2] W. Wang, J. Tao and P. Fang, “Dependence of HCI mechanism on temperature for 0.18 um technology and beyond,” IEEE Int. Integrated Reliability Workshop, Final Report, 1999, pp. 66-68. [4.3] J. S. Kolhatkar and A. K. Dutta, “A new substrate current model for submicron MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 4, 2000, pp. 861-863. [4.4] M. V. Fischetti and S. E. Laux, “Understanding hot-electron transport in silicon devices: Is there a shortcut? ” J. Appl. Phys., vol. 78, no. 2, 1995, pp. 1058-1087. [4.5] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., USA: John Wiley & Sons, 1981, p. 28. [4.6] H. Wong and M. C. Poon, “Approximation of the length of velocity saturation region in MOSFET’s,” IEEE Trans. Electron Devices, vol. 44, no. 11, 1997, pp. 2033-2036. [4.7] T. Y. Chan, P. K. Ko and C. Hu, “A simple method to characterize substrate current in MOSFET’s,” IEEE Electron Device Lett., vol. EDL-5, no. 12, 1984, pp. 505-507. [4.8] N. D. Arora and M. S. Sharma, “MOSFET substrate current model for circuit simulation,” IEEE Trans. Electron Devices, vol. 38, no. 6, 1991, pp. 1392-1398. [4.9] J. Yang, S. Chung, P. C. Chou, C. H. Chen and M. S. Lin, “A new approach to modeling the substrate current of pre-stressed and post-stressed MOSFET’s,” IEEE Trans. Electron Devices, vol. 42, no. 6, 1995, pp. 1113-1119. [4.10] T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto and M. Yoshimi, “Hot-carrier effects in 0.1μm gate length CMOS devices,” IEEE IEDM Tech. Dig., 1999, pp. 695-698. [4.11] C. H. Ling and L. K. See, “A modified lucky electron model for impact ionization rate in NMOSFET’s at 77 K,” IEEE Trans. Electron Devices, vol. 46, no. 1, 1999, pp. 263-266. [4.12] Y. Ohkura, “Quantum effects in Si n-MOS inversion layer at high substrate concentration,” Solid-Stare Electronics, vol. 33, no. 12, 1990, pp. 1581-1585. [4.13] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I — Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, 1994, pp. 2357–2362. [4.14] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305. [4.15] M. Song, K. P. MacWilliams and J. C. S. Woo, “Comparison of nMOS and pMOS hot carrier effects from 300 to 77 K,” IEEE Trans. Electron Devices, vol. 44, no. 2, 1997, pp. 268-276. [4.17] F. C. Hsu and K. Y. Chiu, “Temperature dependence of hot-electron-induced degradation in MOSFET''s,” IEEE Electron Device Lett., no. 5, 1984, pp. 148-150. [4.18] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Enhanced degradation of nMOSFET’s under hot carrier stress at elevated temperatures due to the length of velocity saturation region,” IEEE Int. Integrated Reliability Workshop, Final Report, 1994, pp. 69-72. [4.19] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Impact of velocity saturation region on nMOSFET’s hot carrier reliability at elevated temperatures,” IEEE IRPS, 1995, pp. 48-50. [4.20] H. Hwang, J. S.Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperature,” IEEE Electron Device Lett. vol. 16, no. 4, 1995, pp. 148-150. [4.21] A. Ghetti, J. Bude and C. T. Liu, “Monte Carlo simulation of hot-carrier degradation in scaled MOS transistors for VLSI technology,” IEEE IEDM Tech. Dig., 1998, pp. 893-896. [4.22] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466. [4.23] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 201. [4.24] E. Li, E. Rosenbaum, J. Tao, G. C-F Yeap, M-R. Lin, and P. Fang, “Hot carrier effects in nMOSFETs in 0.1μm CMOS technology,” IEEE International Reliability Physics Symposium, 1999, pp.253-258. [4.25] S. Ogawa, M. Shimaya and N. Shiono, “Interface-trap generation at ultrathin Si02 (4-6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys, vol. 77, no. 3, 1995, pp. 1137-1148. [4.26] P. Fang, J. Tao, J. F. Chen, and C. Hu, “Design in hot-carrier reliability for high performance logic applications,” IEEE Custom Integrated Circuits Conf., 1998, pp. 525-531. [5.1] K. Narasimhulu and V. R. Rao, “Deep sub-micron device and analog circuit parameter sensitivity to process variations with halo doping and its effect on circuit linearity,” Jpn. J. Appl. Phys., vol. 44, 2005, pp. 2180-2186. [5.2] K.R. Lakshmikumar, R. A. Hadaway and M.A. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE Journal of Solid-State Circuits, SC-21, 1986, pp. 1057-1066. [5.3] M. J. M. Pelgrom, A. C. J. Duinmaiger and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-state Circuits, SC-24, 1989, pp. 1433-1440. [5.4] S. J. Lovett, R. Clancy, M. Welten, A. Matheson and B. Mason, “Characterizing the mismatch of submicron MOS transistors,” Proceedings of the 1996 IEEE International Conference on Microelectronic Test Structures, vol. 9, 1996, pp. 39-42. [5.5] M. Conti, P. Crippa, S. Orcioni and C. Turchetti, “Layout-based statistical modeling for the prediction of the matching properties of MOS transistors,” IEEE Transactions on Circuits and Systems-I, vol. 49, 2002, pp. 680-685. [5.6] J. Bastos, M. Steyaert, B. Graindourze and W. Sansen, “Matching of MOS transistors with different layout styles,” Proceedings of the 1996 IEEE International Conference on Microelectronic Test Structures, vol. 9, 1996, pp. 17-18. [5.7] Y. Chen, J. Zhou, S.Tedja, F. Hui and A. S. Oates, “Stress-induced MOSFET mismatch for analog circuits,” 2001 IRW Final Report, 2001, pp. 41-43. [5.8] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko, C. Hu, ”Low-voltage hot-electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657. [5.9] J. Bastos, M. Steyaert, A. Pergoot and W.Sansen, “Mismatch characterization of submicron MOS transistors,” Analog Integrated Circuit and Signal Processing, vol. 12, 1997, pp. 95-106. [5.10] J. A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen and H. E. Maes, “A simple characterization method for MOS transistor matching in deep submicron technologies,” Proceedings of the 2001 IEEE International Conference on Microelectronic Test Structures, vol. 14, 2001, pp. 213-218. [5.11] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee, “Three hot-carrier degradation mechanisms in deep-submicron PMOSFETs,” IEEE Trans. Electron Devices, vol. 42, no. 1, 1995, pp. 109-115. [5.12] I. Polishchuk, Y.C. Yeo, Q. Lu, T.J. King and C. Hu “Hot-Carrier reliability comparison for pMOSFETs with ultrathin silicon-nitride and silicon-oxide gate dielectrics”, IEEE Tran. Device and Material Reliability, vol. 1, 2001, pp.158-162. [5.13] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperatures”, IEEE Electron Device Letters, vol. 16, 1995, pp. 148-150.
|