(3.238.174.50) 您好!臺灣時間:2021/04/18 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雙源
研究生(外文):Shuang-Yuan Chen
論文名稱:熱載子導致深次微米及奈米MOSFET劣化之研究
論文名稱(外文):Studies on Hot-Carrier Induced Degradation for Deep Submicron and Nanometer MOSFETs
指導教授:黃恆盛黃恆盛引用關係
口試委員:呂宗昕黃榮堂張忠誠鍾清枝林啟瑞
口試日期:2007-07-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:101
中文關鍵詞:熱載子NBTIMOSFET基底電流最惡劣加壓條件匹配失序
外文關鍵詞:Hot carrierNBTIMOSFETsubstrate currentmost critical stress conditionmismatch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
熱載子(hot carrier)造成MOSFET劣化的問題,雖前人已有大量的研究,但隨著MOSFET的縮小至深次微米及奈米尺度,加上MOSFET在高溫操作的機會增加,使得MOSFET因熱載子而劣化的現象,呈現許多與以往不一樣的行為,本論文的重點即在一方面揭示這些新的現象,一方面找出這些新現象的機制及數學模式。
本論文首先討論基底電流(substrate current)對溫度在不同汲極電壓(drain voltage)有不同依附性的問題,解開所謂轉換點(transition point)的未解問題,並為基底電流建立新的數學模式,再以實例證明,用基底電流監測熱載子可靠度已失其準確性。本論文接著探討熱載子加壓測試MOSFET中,最惡劣條件的問題,經多次實驗證明,深次微米及奈米的MOSFET其熱載子加壓測試中,最惡劣條件已由DAHC(drain avalanche hot carrier)轉至CHC(channel hot carrier),且由低溫轉為高溫。對pMOSFET言,實驗也顯示高溫之CHC的劣化較NBTI(negative biased temperature instability)來的嚴重,論文中也找出其形成機制主要是介面電荷(interface trapped charges)所造成,並推導其壽命方程式。論文最後一個主題是熱載子導致MOSFET對匹配失序(mismatch)的問題,經實驗證明熱載子導致MOSFET劣化的同時,也會使電晶體對的匹配失序更嚴重,二者呈現正比率的關係,推論其機制應是介面電荷隨機的陷入有關。
As the MOSFETs shrink into deep submicron and nanometer regimes and most of their operations are unavoidable in high temperature, hot-carrier (HC) induced MOSFET degradation has revealed many phenomena different from the past. Therefore, although HC related issues have been studied by many researchers, it is still valuable to clear up all these new phenomena, to find out the behind mechanisms and to establish their mathematical models.
In this work, the problem of substrate current exhibiting different temperature dependences at different drain voltages is investigated first. The unsolved so-call “transition point” is cleared up and a new mathematical model for substrate current is proposed. With the evidence from experiments, using the substrate current to monitor the severity of HC effect is lost its accuracy. The next problem focused in this work is the most critical stress mode that should be employed in the HC reliability test. Through many experiments, it is undoubtedly proved that the most critical stress mode has switched from DAHC (drain avalanche HC) to CHC (channel HC) mode and from low to high temperature. For pMOSFETs, it also reveals that their degradation at CHC mode is more severe than that stressed at NBTI (negative biased temperature instability) mode. As for the degradation mechanism, it is found that the interface trapped charges should be the principle culprits. In addition, lifetime models are also derived to correspond with the switch of the stress mode. The last subject of this dissertation is the MOSFET mismatches induced by the HC effects. This work found that, as the HC degrading the MOSFETs, it also degenerates the matching of MOSFETs’ properties. The experiment results reveal that the severity of HC effects and their mismatches have proportional relationship. The degeneration mechanism is inferred to be the random generation and spatial distribution of interface trapped charges.
CONTENTS

ABSTRACT (CHINESE)...................................... i
ABSTRACT (ENGLISH)..................................... ii
ACKNOWLEDGEMENTS....................................... iv
CONTENTS................................................ v
LIST OF TABLES........................................ viii
LIST OF FIGURES........................................ ix

1 INTRODUCTION
1.1 Motivation.......................................... 1
1.2 Outline of This Dissertation........................ 3

2 ESTABILISHED HOT-CARRIER HYPOTHESES
2.1 Background.......................................... 5
2.2 Lucky Electron Model ............................... 6
2.3 Recombination Model ................................ 9
2.4 Temperature Effects................................ 12
2.5 Oxide Defects Induced Degradation.................. 14

3 EXPERIMENTS
3.1 Background......................................... 25
3.2 The 0.13 μm Batch.................................. 25
3.2.1 Stress and Measurement Conditions................ 26
3.3 The 0.15 μm Batch.................................. 26
3.3.1 The Experiments for Mismatch Study............... 26
3.3.2 The Experiments for the Study of the Most Critical Stress Mode of PMOSFETs ............................... 27

4 NEW FINDINGS OF HOT-CARRIER INDUCED DEGRADATION ON MOSFETS
4.1 Background........................................ 36
4.2 Substrate Current Issue........................... 36
4.2.1 Problem of Transition Point..................... 36
4.2.2 Modeling of the Substrate Current............... 38
4.3 Device Degradation Issue.......................... 43
4.3.1 NMOSFETs........................................ 43
4.3.2 PMOSFETs........................................ 45
4.4 The Worst Stress Condition Issue.................. 48
4.4.1 NMOSFETs........................................ 48
4.4.2 PMOSFETs........................................ 50

5 HOT-CARRIER INDUCED MISMATCHES ON MOSFETS
5.1 Background........................................ 81
5.2 Results and Discussion............................ 82
5.3 Conclusions....................................... 85

6 CONCLUSIONS AND FUTURE WORKS
6.1 Summarized Conclusions............................ 92
6.2 Future Works...................................... 94
REFERENCES............................................ 95
REFERENCES
[1.1] Department of Investment Services, MOEA, Taiwan, http://investintaiwan.nat.gov.tw/en/opp/semi_micro.html
[1.2] J. A. Maiz, “Reliability challenges: preventing them from becoming limiters to technology scaling,” Keynote speech at IEEE International Integrated Reliability Workshop, California, USA, 2006.
[1.3] K. Xiu and M. Ketchen, “Thermal modeling of a small extreme power density macro on a high power density microprocessor chip in the presence of realistic packaging and interconnect structure,” Electronic Components and Technology Conf., 2004, pp. 918-923.
[1.4] J. Ahn, H. Kim, T. Kim, H. Shin, Y. Kim, D. Lim, J. Kim, U. Chung, S. Lee and K. Suh, “1GHz microprocessor integration with high performance transistor and low RC delay,” IEDM Tech. Dig., 1999, pp. 683-686.
[1.5] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 110.
[1.6] H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T, Morimoto, Y. Katsumata and H. Iwai, “A study of hot-carrier degradation in n- and p-MOSFETs with ultra-thin gate oxides in the direct-tunneling regime,” IEEE IEDM Tech. Dig., 1997, pp. 453-456.
[1.7] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko and C. Hu, “Low-voltage hot electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657.
[1.8] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305.
[1.9] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466.
[2.1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., USA: John Wiley & Sons, 1981, p. 184.
[2.2] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, UK: Cambridge University Press, 1998, pp. 97-98.
[2.3] M. V. Fischetti and S. E. Laux, “Understanding hot-electron transport in silicon devices: Is there a shortcut? ” J. Appl. Phys., vol. 78, no. 2, 1995, pp. 1058-1087.
[2.4] S. A. Abbas and R. C. Dockerty, “Hot-carrier instability in IGFET’s,’’ Appl Phys. Lett., vol. 27, 1975, pp. 147-148.
[2.5] T. H. Ning, C. M. Osburn, and H. N. Yu, “Threshold instability in IGFET’s due to emission of leakage electrons from silicon substrate into silicon dioxide,” Appt. Phys. Lett., vol. 29, 1976, pp. 198-200.
[2.6] T. H, Ning, P. W, Cook, R. H. Dennard, C. M. Osburn, S. E Schuster and H. N Yu, “1 μrn MOSFET VLSI technology: Part IV—Hot-electron design constraints,” IEEE Journal of Solid-State Circuits, vol. sc-14, no. 2, 1979, pp. 268-275.
[2.7] W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electron., vol. 2, 1961, pp. 35-67.
[2.8] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305.
[2.9] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko and C. Hu, “Low-voltage hot electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657.
[2.10] R. B. Fair and R. C. Sun, “Threshold-voltage instability in MOSFET’s due to channel hot-hole emission,” IEEE Trans. Electron Devices, vol. ED-28, Jan. 1981, pp. 83–94.
[2.11] E. Takeda, A. Shimizu, and T. Hagiwara, “Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFET’s,” IEEE Electron Device Lett., vol. EDL-4, Sept. 1983, pp. 329-331.
[2.12] K. R. Hofmann, C. Werner, W. Weber, and G. Dorda, “Hot-electron and hole-emission effects in short n-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-32, Mar. 1985, pp. 691-699.
[2.13] Y. Leblebici, S. M. Kang, “Simulation of hot-carrier induced MOS circuit degradation for VLSI reliability analysis.” IEEE Trans. Reliability, vol. 43, no. 2, 1994, pp. 197-206.
[2.14] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466.
[2.15] K. Xiu and M. Ketchen, “Thermal modeling of a small extreme power density macro on a high power density microprocessor chip in the presence of realistic packaging and interconnect structure,” Electronic Components and Technology Conf., 2004, pp. 918-923.
[2.16] J. Ahn, H. Kim, T. Kim, H. Shin, Y. Kim, D. Lim, J. Kim, U. Chung, S. Lee and K. Suh, “1GHz microprocessor integration with high performance transistor and low RC delay,” IEDM Tech. Dig., 1999, pp. 683-686.
[2.17] T. Chen, C. Zhu, L. Najafizadeh, B. Jun, A. Ahmed, R. Diestelhorst, G. Espinel and J. D. Cressler, “CMOS reliability issues for emerging cryogenic lunar electronics applications,” Solid-State Electronics, vol. 50, 2006, pp. 959-963.
[2.18] M. Song, K. P. MacWilliams and J. C. S. Woo, “Comparison of nMOS and pMOS hot carrier effects from 300 to 77 K,” IEEE Trans. Electron Devices, vol. 44, no. 2, 1997, pp. 268-276.
[2.19] F. C. Hsu and K. Y. Chiu, “Temperature dependence of hot-electron-induced degradation in MOSFET''s,” IEEE Electron Device Lett., no. 5, 1984, pp. 148-150.
[2.20] P. Aminzadeh, M. Alavi and D. Scharfetter, “Temperature dependence of substrate current and hot-carrier-Induced degradation at low drain bias,” IEEE Symp. VLSI Technology, 1998, pp. 178-179.
[2.21] W. Wang, J. Tao and P. Fang, “Dependence of HCI mechanism on temperature for 0.18 um technology and beyond,” IEEE Int. Integrated Reliability Workshop, Final Report, 1999, pp. 66-68.
[2.22] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Enhanced degradation of nMOSFET’s under hot carrier stress at elevated temperatures due to the length of velocity saturation region,” IEEE Int. Integrated Reliability Workshop, Final Report, 1994, pp. 69-72.
[2.23] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Impact of velocity saturation region on nMOSFET’s hot carrier reliability at elevated temperatures,” IEEE IRPS, 1995, pp. 48-50.
[2.24] H. Hwang, J. S.Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperature,” IEEE Electron Device Lett. vol. 16, no. 4, 1995, pp. 148-150.
[2.25] L. Su, S. Subbanna, E. Crabbe, P. Agnello, E. Nowak, R. Schulz, S. Raugh, H. Ng, T. Newman, A. Ray, M. Hargrov, A. Acovic, J. Snare, S. Crowder, B. Chen, J. Sun and B. Davari, “A high performance 0.08 μm CMOS,” Technical Digest of Symposium on VLSI Technology, 1996, pp. 12- 13.
[2.26] E. Li, E. Rosenbaum, J. Tao, G. C-F Yeap, M-R. Lin, and P. Fang, “Hot carrier effects in nMOSFETs in O.1pm CMOS technology,” IEEE International Reliability Physics Symposium, 1999, pp.253-258.
[2.27] S. C. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidizes silicon surfaces,” IEEE Trans. Electron Devices, vol. ED-27, 1980, p. 1497-1508.
[2.28] F. C. Hsu and S. Tam. “Relationship between MOSFET degradation and hot-electron-induced interface-state generation,” IEEE Electron Device Lett., vol. EDL-5, 1984, pp. 50-52.
[2.29] J. E. Chung, P. K. Ko and C. Hu, “A model for hot-electron-induced MOSFET linear- current degradation based on mobility reduction due to interface-state generation,” IEEE Trans. Electron Devices, vol. 38, no. 6, 1991, pp. 1362-1370.
[2.30] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 198.
[2.31] J. G. Hwu, Special Topic on Oxide Reliability, Handout of the class in National Taiwan University, 2004.
[4.1] P. Aminzadeh, M. Alavi and D. Scharfetter, “Temperature dependence of substrate current and hot-carrier-Induced degradation at low drain bias,” IEEE Symp. VLSI Technology, 1998, pp. 178-179.
[4.2] W. Wang, J. Tao and P. Fang, “Dependence of HCI mechanism on temperature for 0.18 um technology and beyond,” IEEE Int. Integrated Reliability Workshop, Final Report, 1999, pp. 66-68.
[4.3] J. S. Kolhatkar and A. K. Dutta, “A new substrate current model for submicron MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 4, 2000, pp. 861-863.
[4.4] M. V. Fischetti and S. E. Laux, “Understanding hot-electron transport in silicon devices: Is there a shortcut? ” J. Appl. Phys., vol. 78, no. 2, 1995, pp. 1058-1087.
[4.5] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., USA: John Wiley & Sons, 1981, p. 28.
[4.6] H. Wong and M. C. Poon, “Approximation of the length of velocity saturation region in MOSFET’s,” IEEE Trans. Electron Devices, vol. 44, no. 11, 1997, pp. 2033-2036.
[4.7] T. Y. Chan, P. K. Ko and C. Hu, “A simple method to characterize substrate current in MOSFET’s,” IEEE Electron Device Lett., vol. EDL-5, no. 12, 1984, pp. 505-507.
[4.8] N. D. Arora and M. S. Sharma, “MOSFET substrate current model for circuit simulation,” IEEE Trans. Electron Devices, vol. 38, no. 6, 1991, pp. 1392-1398.
[4.9] J. Yang, S. Chung, P. C. Chou, C. H. Chen and M. S. Lin, “A new approach to modeling the substrate current of pre-stressed and post-stressed MOSFET’s,” IEEE Trans. Electron Devices, vol. 42, no. 6, 1995, pp. 1113-1119.
[4.10] T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto and M. Yoshimi, “Hot-carrier effects in 0.1μm gate length CMOS devices,” IEEE IEDM Tech. Dig., 1999, pp. 695-698.
[4.11] C. H. Ling and L. K. See, “A modified lucky electron model for impact ionization rate in NMOSFET’s at 77 K,” IEEE Trans. Electron Devices, vol. 46, no. 1, 1999, pp. 263-266.
[4.12] Y. Ohkura, “Quantum effects in Si n-MOS inversion layer at high substrate concentration,” Solid-Stare Electronics, vol. 33, no. 12, 1990, pp. 1581-1585.
[4.13] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I — Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, 1994, pp. 2357–2362.
[4.14] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305.
[4.15] M. Song, K. P. MacWilliams and J. C. S. Woo, “Comparison of nMOS and pMOS hot carrier effects from 300 to 77 K,” IEEE Trans. Electron Devices, vol. 44, no. 2, 1997, pp. 268-276.
[4.17] F. C. Hsu and K. Y. Chiu, “Temperature dependence of hot-electron-induced degradation in MOSFET''s,” IEEE Electron Device Lett., no. 5, 1984, pp. 148-150.
[4.18] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Enhanced degradation of nMOSFET’s under hot carrier stress at elevated temperatures due to the length of velocity saturation region,” IEEE Int. Integrated Reliability Workshop, Final Report, 1994, pp. 69-72.
[4.19] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Impact of velocity saturation region on nMOSFET’s hot carrier reliability at elevated temperatures,” IEEE IRPS, 1995, pp. 48-50.
[4.20] H. Hwang, J. S.Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperature,” IEEE Electron Device Lett. vol. 16, no. 4, 1995, pp. 148-150.
[4.21] A. Ghetti, J. Bude and C. T. Liu, “Monte Carlo simulation of hot-carrier degradation in scaled MOS transistors for VLSI technology,” IEEE IEDM Tech. Dig., 1998, pp. 893-896.
[4.22] N. Koike and K. Tatsuuma, “A drain avalanche hot carrier lifetime model for n- and p-channel MOSFETs,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, 2004, pp. 457-466.
[4.23] T. Hori, Gate Dielectrics and MOS ULSIs, Berlin: Springer, 1997, p. 201.
[4.24] E. Li, E. Rosenbaum, J. Tao, G. C-F Yeap, M-R. Lin, and P. Fang, “Hot carrier effects in nMOSFETs in 0.1μm CMOS technology,” IEEE International Reliability Physics Symposium, 1999, pp.253-258.
[4.25] S. Ogawa, M. Shimaya and N. Shiono, “Interface-trap generation at ultrathin Si02 (4-6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys, vol. 77, no. 3, 1995, pp. 1137-1148.
[4.26] P. Fang, J. Tao, J. F. Chen, and C. Hu, “Design in hot-carrier reliability for high performance logic applications,” IEEE Custom Integrated Circuits Conf., 1998, pp. 525-531.
[5.1] K. Narasimhulu and V. R. Rao, “Deep sub-micron device and analog circuit parameter sensitivity to process variations with halo doping and its effect on circuit linearity,” Jpn. J. Appl. Phys., vol. 44, 2005, pp. 2180-2186.
[5.2] K.R. Lakshmikumar, R. A. Hadaway and M.A. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE Journal of Solid-State Circuits, SC-21, 1986, pp. 1057-1066.
[5.3] M. J. M. Pelgrom, A. C. J. Duinmaiger and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-state Circuits, SC-24, 1989, pp. 1433-1440.
[5.4] S. J. Lovett, R. Clancy, M. Welten, A. Matheson and B. Mason, “Characterizing the mismatch of submicron MOS transistors,” Proceedings of the 1996 IEEE International Conference on Microelectronic Test Structures, vol. 9, 1996, pp. 39-42.
[5.5] M. Conti, P. Crippa, S. Orcioni and C. Turchetti, “Layout-based statistical modeling for the prediction of the matching properties of MOS transistors,” IEEE Transactions on Circuits and Systems-I, vol. 49, 2002, pp. 680-685.
[5.6] J. Bastos, M. Steyaert, B. Graindourze and W. Sansen, “Matching of MOS transistors with different layout styles,” Proceedings of the 1996 IEEE International Conference on Microelectronic Test Structures, vol. 9, 1996, pp. 17-18.
[5.7] Y. Chen, J. Zhou, S.Tedja, F. Hui and A. S. Oates, “Stress-induced MOSFET mismatch for analog circuits,” 2001 IRW Final Report, 2001, pp. 41-43.
[5.8] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko, C. Hu, ”Low-voltage hot-electron currents and degradation in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 37, no. 7, 1990, pp. 1651-1657.
[5.9] J. Bastos, M. Steyaert, A. Pergoot and W.Sansen, “Mismatch characterization of submicron MOS transistors,” Analog Integrated Circuit and Signal Processing, vol. 12, 1997, pp. 95-106.
[5.10] J. A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen and H. E. Maes, “A simple characterization method for MOS transistor matching in deep submicron technologies,” Proceedings of the 2001 IEEE International Conference on Microelectronic Test Structures, vol. 14, 2001, pp. 213-218.
[5.11] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee, “Three hot-carrier degradation mechanisms in deep-submicron PMOSFETs,” IEEE Trans. Electron Devices, vol. 42, no. 1, 1995, pp. 109-115.
[5.12] I. Polishchuk, Y.C. Yeo, Q. Lu, T.J. King and C. Hu “Hot-Carrier reliability comparison for pMOSFETs with ultrathin silicon-nitride and silicon-oxide gate dielectrics”, IEEE Tran. Device and Material Reliability, vol. 1, 2001, pp.158-162.
[5.13] H. Hwang, J. S. Goo, H. Kwon and H. Shin, “Anomalous hot carrier degradation of nMOSFET’s at elevated temperatures”, IEEE Electron Device Letters, vol. 16, 1995, pp. 148-150.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔