(3.235.41.241) 您好!臺灣時間:2021/04/11 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭成瑜
研究生(外文):Cheng-Yu Peng
論文名稱:非均向光學薄膜之偏極轉換量測與應用
論文名稱(外文):Measurement and Application of Polarization Conversion from an Anisotropic Thin Film
指導教授:任貽均
口試委員:陳學禮林世聰周晟李正中
口試日期:2007-05-12
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:非均向光學薄膜偏極轉換光學常數
外文關鍵詞:anisotropic thin filmpolarization conversionoptical constants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用稜鏡/非均向光學薄膜/空氣組態增強斜向入射的偏極轉換反射率,來探討單層柱狀結構薄膜隨角度和波長的光學特性與光學常數的量測。發現在特定的入射角範圍會反射偏極轉換的帶通光譜,並分析膜層厚度、入射角、入射平面角對光譜曲線的影響。實驗上以斜向沈積方法製鍍單層柱狀氟化鎂薄膜,當變化入射角時,會造成帶通光譜曲線的位移;而變化入射平面角(旋轉基板)會改變柱狀結構的方位,並造成光譜曲線的位移。另外,發現在單層非均向光學薄膜的架構下,只要再加鍍一層均向性薄膜(安排在稜鏡/非均向性薄膜/高折射率均向薄膜/空氣系統和稜鏡/非均向性薄膜/低折射率均向薄膜/空氣系統)便可產生窄帶偏極轉換光譜;而寬帶偏極轉換光譜可由系統(稜鏡/低折射率均向薄膜/非均向性薄膜/空氣)獲得。
另一方面,偏極轉換隨角度變化相當靈敏,可以用來測量非均向性薄膜的光學常數。因此本論文探討隨入射角度變化的偏極轉換反射率曲線,基於變化光學常數對角頻譜曲線的靈敏度分析,而光學常數的精確度可由入射角與強度量測的解析能力來決定。非均向性薄膜的光學常數包含三個主軸折射率、柱狀傾角、膜層厚度,在此提出三角形收斂方法將光學常數的精確度限制在量測誤差的範圍內,僅使用簡易而靈敏的強度量測方法即可精確測量非均向性薄膜之光學常數。
This work presents the polarization conversion reflectance (PCR) is enhanced by light reflected from a single-layered system (prism/anisotropic thin film/air) at a certain incident angle range. The columnar magnesium fluoride film was prepared by oblique angle deposition. The relations between wavelength and angular spectra of PCR and optical constants of the prism/anisotropic thin film/air configuration are built and discussed. The band-pass PCR wavelength spectrum can be modulated by changing thickness, orientation of deposition plane, and the angle of incidence. In addition, arranging an isotropic thin film yields the narrowband PCR spectrum with respect to the prism/anisotropic thin film/low-refractive thin film/air system and prism/anisotropic thin film/high-refractive thin film/air system. The broadband PCR spectrum is obtained by arranging prism/ low-refractive thin film/anisotropic thin film/ air system.
On the other hand, it is shown that the angular-dependent PCR is sensitive enough to determine optical constants. The sensitivities of the angular spectrum of PCR to variations of optical constants are calculated and analyzed. Based on the sensitivity calculation, the accuracy of detected optical constants can be derived by considering the resolution ability in angle and intensity measurement. The anisotropic optical constant determination, including three principal indices, a tilt angle, and a thickness, can be determined from the sensitive-angular spectrum of PCR. Here, the triangle convergence method proposes that the optical constants can be resolved to approach the restricted range from measurement inaccuracy.
中文摘要……………………………………………………….……………………....i
英文摘要……………………………………………………….……………………..iii
誌謝……………………………………………………….…………………………...v
目 錄…………………………………………………………………………….....…vi
表 目 錄…………………………………………………………………………….viii
圖 目 錄…………………………………………………………………….………..ix
第一章 緒論與文獻回顧 1
1.1 文獻回顧 1
1.2 非均向性介質的偏極轉換現象 7
1.3 單一柱狀結構之光學薄膜 8
第二章 非均向光學薄膜之光學計算 17
2.1 非均向性薄膜之Haiming Wang量測理論 18
2.1.1 非均向性光學薄膜之波向量分佈 18
2.1.2 非均向性薄膜內之非對稱反射現象 21
2.1.3 入射平面與沈積平面重合之反射係數計算 22
2.2 非均向性薄膜之向量法計算 25
2.2.1 電磁波入射非均向性薄膜的反射係數與透射係數 25
2.2.2 單層非均向性薄膜的偏極轉換向量處理 29
2.3 非均向性薄膜之矩陣法計算 34
2.3.1 非均向性物質的傳播方程式 34
2.3.2 單層非均向性薄膜的反射係數與透射係數 36
第三章 偏極轉換隨波長與角度變化之特性 40
3.1 非均向薄膜之顯著偏極轉換特性 40
3.1.1 偏極轉換隨角度變化之特性 40
3.1.2 偏極轉換對應波長變化之特性 47
3.2 實驗架構與偏極轉換曲線量測 50
3.2.1 蒸鍍系統 50
3.2.2 蒸鍍流程 51
3.2.3 蒸鍍架構 51
3.2.4 量測儀器 52
3.3 偏極轉換光譜之波長調制 54
3.3.1 入射角、入射平面角對偏極轉換光譜之影響 54
3.3.2 實驗數據與結果 57
3.4 窄帶、寬帶偏極轉換光譜 60
3.4.1 薄膜厚度對偏極轉換光譜之影響 60
3.4.2 實驗數據與結果 65
第四章 非均向性光學薄膜之偏極轉換量測方法 68
4.1 非均向性薄膜之偏極轉換效應 68
4.2 偏極轉換曲線之靈敏度分析 72
4.3 實驗架構與偏極轉換量測 76
4.4 實驗結果與討論 77
4.4.1 以三角形收斂方法決定非均向薄膜之光學常數 77
4.4.2 非均向性光學薄膜之折射率色散量測 79
第五章 結論 81
參考文獻……………………………………………………….…………….……....82
[1]I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, USA, 1997).
[2]Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2005).
[3]K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams and C. Buzea, ”Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Review of Scientific Instruments, vol.75, No.4, 2004, pp.1089-1097.
[4]K. Robbie, J. C. Sit and M. J. Brett, ”Advanced techniques for glancing angle deposition,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol.16, No.3, 1998, pp.1115-1122.
[5]Lakhtakia and R. Messier,“Sculptured thin films – I. Concepts,” Mater. Res. Innov., vol., 1997, pp.145-148.
[6]Messier and A. Lakhtakia,‘‘Sculptured thin films—II. Experiments and applications,’’ Mater. Res. Innov. vol.2, 1999, pp.217–222.
[7]R. Messier, V. C. Venugopal and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol A vol.18, 2000, pp.1538–1545.
[8]F. Horowitz,“Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona, Optical Science Center, 1983.
[9]J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens and J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” Journal of the Optical Society of America A, vol.2, 1985, pp.1693-1697.
[10]T. Motohiro and Y. Taga,“Thin film retardation plate by oblique deposition”, Applied optics, vol.28, 1989, pp.2466-2482.
[11]R. M. A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett., vol. 61, 1992, pp. 3118-3120.
[12]K. Robbie and M. J. Brett,“First thin film realization of a helicoidal bianisotropic medium”, Journal of Vacuum Science & Technology A, vol.13, No.6, 1995, pp.2991-2993.
[13]J. C. Sit, D. J. Broer, and M. J. Brett, “Optical devices fabricated from porous thin films embedded with liquid crystals,” IEEE Electron Devices Meeting, 1999, pp. 123-126.
[14]J. C. Sit, D. Vick, K. Robbie and M. J. Brett, “Thin film microstructure control using glancing angle deposition by sputtering,” Journal of Materials Research, vol. 14, 1999, pp. 1197-1199.
[15]Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga interface for biaxial columnar media,” Optical Engineering, vol. 37, 1998, pp. 3268-3271.
[16]G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga interface in sculptured thin films- absence of Bragg phenomna,” Optical Engineering, vol. 37, 1998, pp. 2843-2847.
[17]J. Hodgkinson and Q. H.Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Applied Optics, vol. 38, 1999, pp. 3621-3625.
[18]J. Hodgkinson, Q. H.Wu, B. Knight, A. Lakhtakia and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Applied Optics, vol. 39, 2000, pp. 642-649.
[19]Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering, vol. 39, 2000, pp. 1863-1868.
[20]G. Beydaghyan, K. Kaminska, T. Brown and K. Robbie, “Enhanced birefringence in vacuum evaporated silicon thin films,” Applied Optics, vol. 43, 2004, pp. 5343-5349.
[21]H. Wang, “Reflection/ transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” Journal of Modern Optics, vol.42,1995, pp.497-505.
[22]H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incident,” Journal of the Optical Society of America A, vol.11, 1994, pp.2331-2337.
[23]G. I. Surdutovich, J. Kolenda, J. F. Fragalli, L. Misoguti, R. Vitlina, V. Baranauskas, “An interference method for the determination of thin film anisotropy,” Thin Solid Films, vol. 279, 1996, pp.119-123.
[24]Yi-Jun Jen, Cheng-Chung Lee and Yu-Min Chang, “Reflection property of anisotropic films: comparison of symmetric and asymmetric theories using attenuated total reflection,” Journal of Optics A: Pure and Applied Optics vol. 4, 2002, pp. 481-484.
[25]G. Zhang, K. Sasaki, “Measuring anisotropic refractive indices and film thickness of thin organic crystals using the prism coupling method,” Applied Optics, vol. 27, 1988, pp. 1358-1362.
[26]F. Flory, D. Endelema, E. Pelletier and I. J. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Applied Optics, vol. 32, 1993, pp. 5649-5659.
[27]H. Wang, “Excitation of surface plasmon oscillations at an interface between anisotropic dielectric and metallic media,” Optical Material, vol. 4, 1995, pp. 651-656.
[28]Yi-Jun Jen, Cheng-Hung Hsieh and Tsai-Sheng Lo, “Optical constant determination of an anisotropic thin film via surface plasmon resonance: analyzed by sensitivity calculation,” Optics Communications vol. 224, 2005, pp. 269-277.
[29]S. Wang, M. Shah and J. D. Crow, “Studies of the use of gyrotropic and anisotropic materials for mode conversion in thin-film optical-waveguide applications,” J. Appl. Phys., vol. 43, 1972, pp. 1861-1875.
[30]S. Wang, M. Shah and J. D. Crow, “Optical-waveguide mode-conversion experiments,” Appl. Phys. Lett., vol. 20, 1972, pp. 66-69.
[31]S. K. Chung and S. S. Kim, “An exact wave-optics analysis of optical waveguide with anisotropic and gyrotropic materials,” J. Appl. Phys., vol. 63, 1988, pp. 5654-5659.
[32]M. C. Simon, and L. I. Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics, vol.38, 1991, pp.503-518.
[33]M. C. Simon, and R M Echarri,”Internal reflection in uniaxial crystals I.,” Journal of Modern Optics, vol.37, 1990, pp.121-129.
[34]M. C. Simon, and R M Echarri, ” Internal reflection in uniaxial crystals II.,” Journal of Modern Optics, vol.37, 1990, pp.131-144.
[35]M. C. Simon, and R M Echarri, ”Internal reflection in uniaxial crystals III.,” Journal of Modern Optics, vol.37, 1990, pp.1139-1148.
[36]F. Yang and J. R. Sambles, ” Optical characterization of a uniaxial material by the polarization-conversion reflectivity technique,” J. Opt. Soc. Am. B, vol.11, 1994, pp.605-1517.
[37]F. Yang, H. Gao and J. R. Sambles, “Relations between the critical angles and the optical tensor of a biaxial material,” Applied Optics, vol. 41, 2002, pp. 7264-7274.
[38]Abdulhalim, “ matrix summation method for multiple reflections and transmissions in a biaxial slab between two anisotropic media,” Optics Communications, vol. 163, 1999, pp. 9-14.
[39]J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. vol. 27, 1966, pp. 87-91.
[40]Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. vol. 37, 1998, ppl 2653-2659.
[41]E. Pelletier, F. Flory and Y. Hu, “Optical characterization of thin films by guided waves,” Appl. Opt. vol. 28, 1989, pp. 2918-2924.
[42]F. Chiadini and A. Lakhtakia, “Extension of Hodgkinson’s model for optical characterization of columnar thin films,” Microwave and Optical Technology Letters, vol. 42, 2004, pp. 72-73.
[43]Yi-Jun Jen and Cheng-Chung Lee, “Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium,” Optics Letters vol. 26, 2001, pp. 190-192.
[44]Yi-Jun Jen and Cheng-Chung Lee, “Determination of the optical constants of an arbitrary oriented anisotropic thin film by exciting surface plasmons analyzed by the non-sysmmetric theory,” Optical Engineering vol. 42, 2003, pp. 925-928.
[45]Yi-Jun Jen, “Experimental verification of backward-wave phenomenon by observation of reflection at angles larges larger than 90 in an anisotropic medium,” Applied Physics Letters vol. 83, 2003, pp. 3266-3268.
[46]Yi-Jun Jen, Cheng-Yu Peng and Shu-Wei Lien, “Sensitive identification and measurement of a weak anisotropic thin film from the reflectance angular spectrum,” Journal of Optics A: Pure and Applied Optics vol. 8, 2006, pp. 194-198.
[47]M. Klopfleisch ,M. Golz and U. Trutschel, “Experimental verification of a virtual-mode treatment for the excitation of surface plasmon polaritons by attentuated total reflection”, Appl. Opt. Vol. 31 No.24, 1992, pp. 5017-5021.
[48]Yi-Jun Jen and Cheng-Lung Chiang, “Optical thickness and anisotropic orientation of a birefringent thin film: analysis from explicit expressions for reflection and transmission coefficients,” Optical Engineering vol. 45, 2006, pp. 023802.
[49]D. W. Berreman, “Optics in Stratified and Anisotropic Media:4×4-Matrix Formulation”, Journal of the Optical Society of America, vol.62, 1972, pp.502-510.
[50]H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing Bristol and Philadelphia, 1986).
[51]Yi-Jun Jen and Cheng-Lung Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Optics Communications vol. 265, 2006, pp. 446-453.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 何澤生(1986):〈科技政策掌門人—李國鼎〉,《財訊》。第54期,頁198-207。
2. 何榮桂、韓善民(1997):〈我國中小學資訊教育的推展策略、問題與展望〉,《社教雙月刊》。第81期,頁7-14。
3. 沈君山(1979):〈漫談發展科技〉,《科學月刊》。第109期,頁12-13。
4. 李隆盛(1995):〈學校教師和行政人員在職進修資訊教育計畫之檢討〉,《教育研究資訊》。第3卷第1期,頁51-63。
5. 李國鼎(1973):〈邁向六十年代的開發國家〉,《幼獅月刊》。第41卷第6期,頁3-4。
6. 王鍾毅(1986):〈透視李國鼎的科技班底〉,《財訊》。第54期,頁208-211。
7. 丁錫鏞(1982a):〈重點科技發展之我見〉,《科學月刊》。第13卷第3期,頁12-13。
8. 宋賀德(1985):〈百億美元順差背後的隱憂〉,《財訊》。第34期,頁42-46。
9. 周成功(1984):〈重點科技與基礎研究-從生物技術談起〉,《科學月刊》。第175期。
10. 俞國華(1980):〈我國經濟的新考驗〉,《自由中國之工業》。第54卷第5期。頁2-6。
11. 胡定華(1983):〈迎接資訊化社會的來臨〉,《產業金融季刊》。第39期,頁6-14。
12. 徐立德(1984):〈現階段中華民國經濟發展的幾個關鍵問題〉,《自由中國之工業》。第62卷第1期。頁1-6。
13. 馬難先(1980):〈管理資訊系統的電腦化〉,《實業世界》。第177期,頁71-75。
14. 張建邦(1978):〈資訊科學的發展〉,《中央月刊》。第10卷第7期,頁174-178。
15. 夏漢民(1996):〈中華民國資訊基礎建設之遠景與藍圖〉,《經濟情勢暨評論季刊》。第1卷第4期,http://www.moea.gov.tw/~ecobook/season/sa311.htm。
 
系統版面圖檔 系統版面圖檔