跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃浚銘
研究生(外文):Chun-Ming Huang
論文名稱:結合BPN、AHP與CBR方法建構於智慧型肝病醫療診斷模式
論文名稱(外文):Constructing an Intelligent Liver Diagnosis Model Using BPN, AHP, and CBR Approaches
指導教授:林榮禾林榮禾引用關係
口試委員:俞凱允翁頌舜邱垂昱
口試日期:2007-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:商業自動化與管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:肝病診斷倒傳遞類神經網路案例式推理層級分析法SF-36健康量表
外文關鍵詞:Liver diagnosisBPNCBRAHPSF-36
相關次數:
  • 被引用被引用:4
  • 點閱點閱:651
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據衛生署2000年至2006年統計台灣十大死因資料顯示,癌症位居十大死因之首,其中肝癌更是台灣第一大癌症病因。而慢性肝病及肝硬化為台灣十大死因的第七位。肝病初期症狀不明顯,即使是肝硬化或肝癌等嚴重的肝病,恐怕也要等到病情相當嚴重時才會出現症狀。而過去肝病診斷研究大多以單一肝病類型為主,如慢性活動性肝炎與肝癌,尚無針對全面性肝病類型之診斷模式建立。因此為達到更準確與全面性的肝病醫療診斷及提昇醫療品質與降低診斷成本,本研究之目的為建立智慧型肝病醫療診斷模式 (ILDM),並收集病患之生化檢驗資料及其生活習慣健康調查資料,運用倒傳遞類神經網路 (BPN) 建構肝病判別模式,來判定是否罹患肝病,再結合層級分析法 (AHP) 及案例式推理 (CBR) 找出指標屬性權重值,來診斷病患罹患肝病類型與其治療方式。研究結果顯示,BPN肝病判別模式其分類平均準確率達98.17% (訓練準確率100%,測試準確率93.94 %),且CBR的肝病類型診斷準確率達100%。另外,醫師專家以AHP法制定之權重值亦能增加CBR診斷之可信度,並有效提出肝病之藥品採用及治療方法,且醫師可依病患生活習慣改善建議,以輔助肝病病患之治療。CBR除分析罹患肝病類型之可能性外,亦能避免BPN造成誤判病患結果,以達成醫師在肝病診斷推論及治療之實務有效應用。
According to the statistics of Department of Health (DOH) from 2000 to 2006, the cancer is the first disease of the top ten fatal diseases. Among them, the liver cancer is the first cause of disease of the cancer in Taiwan, and the chronic liver diseases and cirrhosis are the seventh of the top ten fatal diseases in Taiwan. The symptoms of liver diseases are not obvious in the initial stage. Even serious liver diseases, such as cirrhosis or the liver cancer, the symptoms will not appear until the condition is quite serious. Most studies of liver diagnosis in the past relied mainly on single type of liver disease, such as the chronic activity hepatitis and liver cancer. There is no liver diagnosis model for all types of liver diseases yet. In order to reach more accurate and complete liver diagnosis, promote medical quality, and reduce the cost of diagnosis, the purpose of this paper is to construct an Intelligent Liver Diagnosis Model (ILDM). Using Back-Propagation Network (BPN), patient’s laboratory data and health survey are collected to construct a liver disease prediction model which is applied to diagnose whether suffer from a liver disease. Then, Analytic Hierarchy Process (AHP) and Case-Based Reasoning (CBR) are combined to find out the weight values of attributes which is used to diagnose the types of liver diseases and to recommend the appropriate prognosis and treatment. The research results indicate that the average accuracy rate of BPN prediction is 98.17% (training set accuracy rate is 100%, testing set accuracy rate is 93.94%) and CBR diagnostic accuracy rate is 100%. Since the professional physicians’ experiences are provided to initialize the weight values of AHP which can improve the credibility of CBR diagnostic, and it recommends the medicines and treatment for the liver diseases more effectively. The physicians can offer suggestions according to patients’ living styles to assist patients’ treatment. Besides of CBR diagnose on probability of liver diseases, it also can reduce diagnostic errors of BPN prediction in order to prove physicians’ diagnose and apply for effective treatment.
中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
第二章 文獻探討 5
2.1 肝病分類與生化檢驗診斷 5
2.1.1 肝病種類 5
2.1.2 肝病檢驗診斷 5
2.1.3 肝病治療 10
2.1.4 肝病診斷研究應用 11
2.2 生活習慣健康調查 14
2.2.1 生活習慣重要性 14
2.2.2 生活習慣健康調查簡介 15
2.2.3 生活習慣健康調查研究應用 16
2.3 倒傳遞類神經網路 16
2.3.1 倒傳遞類神經網路背景簡介 16
2.3.2 倒傳遞類神經網路優缺點 17
2.3.3 倒傳遞類神經網路於醫學上應用 18
2.4 案例式推理 18
2.4.1 案例式推理基本概念 18
2.4.2 案例式推理優缺點 20
2.4.3 案例式推理於醫學上應用 21
2.5 層級分析法 22
2.5.1 層級分析法簡介 22
2.5.2 層級分析法優缺點 22
2.6 分類決策樹 23
2.6.1 分類決策樹基本概念 23
2.6.2 分類決策樹於醫學上應用 24
2.7 小結 25
第三章 研究設計 26
3.1 研究架構 26
3.2 肝病診斷因子 27
3.3 BPN肝病診斷分析 30
3.3.1 BPN之架構 30
3.3.2 BPN之學習演算法 32
3.3.3 BPN之參數設定 33
3.3.4 BPN之收斂準則 35
3.4 CBR 肝病類型與治療分析 35
第四章 案例分析 43
4.1 BPN肝病診斷判別分析 44
4.1.1 決定網路架構 44
4.1.2 測試參數組合 45
4.1.3 最佳參數組合收斂情況 46
4.2 CBR 肝病類型與治療分析 46
4.2.1 訂定屬性與AHP制定權重 46
4.2.2 建構肝病資料庫與肝病類型案例分析 53
第五章 討論 61
5.1 CBR 肝病類型與治療分析權重制定比較 61
5.2 肝病判別與診斷準確率比較 63
5.3 生化檢驗與全面性肝病診斷因子比較 64
5.4 討論結果分析 65
第六章 結論與建議 66
6.1 結論 66
6.2 管理意涵 66
6.3 限制與建議 67
參考文獻 68
附錄一:國人生活習慣與肝病關聯調查問卷 74
附錄二:肝病診斷因子重要性問卷 78
[1]行政院衛生署,http://www.doh.gov.tw, 資料取得日期: 2007/6/8.
[2]肝病防治學術基金會,http://www.liver.org.tw, 資料取得日期: 2007/2/10.
[3]SF-36台灣版,http://sf36.cgu.edu.tw/index.htm, 資料取得日期: 2007/2/10.
[4]戶田剛太郎,肝臟病常識與防治,武陵出版有限公司,1999。
[5]陳健弘,找回健康肝,原水文化出版,2005。
[6]楊維楨,系統分析在經營決策上的應用,五南圖書出版有限公司,2003。
[7]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,2003。
[8]王英偉,「衛生教育與健康促進」,家庭醫學,第二版,2000,第117-132頁。
[9]石曜堂、洪永泰、張新儀、劉仁沛、林惠生、張明正、張鳳琴、熊昭、吳聖良,「國民健康訪問調查之調查設計、內容、執行方式與樣本人口特性」,台灣公共衛生雜誌,第二十二卷,第六期,2003,第419-430頁。
[10]李蘭、黃美維、陸玓玲、潘憐燕、李隆安、鄧肖琳,「台灣地區成人的健康行為探討:分佈情形、因素結構和相關因素」,中華公共衛生雜誌,第十四卷,第四期,1995,第358-368頁。
[11]周騰達、陳朝棟、郭崇志、林珊依、鄒慧英、劉怡琴、張恆瑞、黃志芳,「烏松鄉成年人健康行為調查及其影響因素探討」,台灣家庭醫學雜誌,第十二卷,第四期,2002,第179-189頁。
[12]胡月娟,「社區民眾健康意識與健康行為初探」,護理研究,第一卷,第四期,1993,第309-315頁。
[13]宮奇林、林梅青、石曉紅、陳珠峰、王民玉、張芊,「多項指標聯合檢測診斷原發性肝癌的研究」,腫瘤防治雜誌,第七卷,第一期,2000,第34-36頁。
[14]劉博仁、李采娟,「過敏性鼻炎患者接受免疫療法之生活品質」,台灣醫學,第九卷,第四期,2005,第455-466頁。
[15]蔡碩倉,「運用類神經網路建構台灣地區農會信用部金融預警系統」,農業經濟半年刊,第六十八期,第117-156頁。
[16]廖尹華,「大學教職員運動參與與SF-36健康生活品質之研究:以國立虎尾科技大學為例」,中華民國大專院校94年度體育學術研討會,專刊,2005,第132-147頁。
[17]吳建興,以約略集合與決策樹萃取危險因子-以逆流性食道炎為例,未出版碩士論文,華梵大學資訊管理學系碩士班,2003。
[18]姚志成,運用資料探勘技術建構脂肪肝預測模式,未出版碩士論文,中原大學資訊管理研究所,2004。
[19]陳憶萱,智慧型醫療診斷模式建構於肝病診斷應用,未出版碩士論文,台北科技大學商業自動化與管理研究所,2006。
[20]黃勝崇,資料探勘應用於醫療院所輔助病患看診指引之研究,未出版碩士論文,南華大學資訊管理學系碩士班,2001。
[21]廖介銘,決策樹應用於糖尿病之探勘,未出版碩士論文,華梵大學資訊管理學系碩士班,2003。
[22]劉建良,以商業智慧觀點探討電腦週邊產品ODM代工供應商關鍵評選因素,未出版碩士論文,實踐大學企業管理研究所,2004。
[23]Aamodt, A. and Plaza, E., “Case-Based Reasoning: foundational issues, methodological Variations, and system approaches,” Artificial Intelligence Communications, IOS Press, vol.7, no.1, 1994, pp.39-59.
[24]Abdolmaleki, P., Buadu, L.D. and Naderimansh, H., “Feature Extraction and Classification of Breast Cancer on Dynamic Magnetic Resonance Imaging Using Artificial Neural Network,” Cancer Letters, vol.171, no.2, 2001, pp.183-191.
[25]Akahoshi, M., Amasoki, Y., Soda, M., Tominaga, T., Ichimaru, S., Nakashima, E., Seto, S. and Yano, K., “Correlation between fatty liver and coronary risk factors: A population study of elderly men and women in Nagasaki, Japan,” Hypertens Research, vol.24, no.4, 2001, pp.337–343.
[26]Armengol, E., Palaudaries, A. and Plaza, E., “Individual prognosis of diabetes long-term risks: A CBR approach,” Methods of Information in Medicine, vol.40, no.11, 2001, pp.46-51.
[27]Badur, S. and Akgün, A., “Diagnosis of hepatitis B infections and monitoring of treatment,” Journal of Clinical Virology, vol.21, no.3, 2001, pp.229-237.
[28]Bellazzi, R., Montani, S., Portinale, L. and Riva, A., “Integrating rule-based and case-based decision making in diabetic patient management,” Cased-Based Reasoning Research and Development Proceedings of Third International Conference on Case-Based Reasoning, 1999, pp.386-400.
[29]Belloc, N.B., “Relationship of health practices and mortality,” Preventive medicine, vol.2, no.1, 1973, pp.67-81.
[30]Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. I., Classification and regression Trees. Belmont, CA: Wadsworth, 1984.
[31]Chen, C.J., Yang, H.I., Su, J., Jen, C.L., Kuo, E., You, S.L., Lu, S.N., Huang, G.T. and Iloeje, U.H., “Risk of Hepatocellular Carcinoma Across a Biological Gradient of Serum Hepatitis B Virus DNA Level,” The Jounal of the America Medicine Association, vol.295, no.1, 2006, pp.65-73.
[32]Chen, C.J., Yu, M.W., Wang, C.J., Huang, H.Y. and Lin, W.C., “Multiple risk factors of hepatocellular carcinoma: a cohort study of 13737 male adults in Taiwan,” Journal of Gastroenterology and Hepatology, vol.8, special issue, 1993, pp.83-87.
[33]Dixon, J. B., Bhathal, P. S. and O’Brien, P. E., “Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese,” Gastroenterology, vol.121, no.1, 2001, pp.91-100.
[34]Elizabeth, G., Violante, A. and Francisco, C., “Using neural networks for differential diagnosis for Alzheimer disease and Vascular dementia,” Expert Systems with Applications, vol.14, no.1-2, 1998, pp.219-225.
[35]Francisco, A., Merner, D., Norman, B. and Kenny, A., “Improving Clinical Decision Support Through Case-Based Data Fusion,” IEEE Transactions On Biomedical Engineering, vol.46, no.10, 1999, pp.1181-1185.
[36]Fritz, H. G., “Case-Based Reasoning applying past experience to new problems,” Information Systems Management, vol.10, no.2, 1993, pp.77-80.
[37]Giannini, E., Risso, D., Botta, F., Chiarbonello, B., Fasoli, A., Malfatti, F., Romagnoli, P., Testa, E., Ceppa, P. and Testa, R., “Validity and clinical utility of the aspartate aminotransferase-alanine aminotransferase ratio in assessing disease severity and prognosis in patients with hepatitis C virus-related chronic liver disease,” Archives of Internal Medicine, vol.163, no.2, 2003, pp.218-224.
[38]Han, J. and Kamber, M., Data Mining: Concepts and techniques, San Francisco: Morgan Kaufmann Publisher, 1999.
[39]Haydon, G. H., Jalan, R., Ala-Korpela, M., Hiltunen, Y., Hanley, J., Jarvis, L. M., Ludlum, C. A. and Hayes, P. C., “Prediction of cirrhosis in patients with chronic Hepatitis C infection by Artificial Neural Network analysis of virus and clinical factors,” Journal of Viral Hepatitis, vol.5, no.4, 1998, pp.255-264.
[40]Hiroshi, N., Yasuyuki, O., Hitomi, N., Seigo, T., Hiroyuki, T. and Hiroki, M., “Application of neural network to the interpretation of laboratory data for the diagnosis of two forms of chronic active hepatitis,” International Hepatology Communications, vol.5, no.3, 1996, pp.160-165.
[41]Hoopman, R., Terwee, C.B., Muller, M.J. and Aaronson, N.K., “Translation and validation of the SF-36 Health Survey for use among Turkish and Moroccan ethnic minority cancer patients in The Netherlands,” European Journal of Cancer, vol.42, no.17, 2006, pp.2982-2990.
[42]Huang, M.J., Chen, M.Y. and Lee, S.C., “Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis,” Expert Systems with Applications, vol.32, no.3, 2007, pp.856-867.
[43]Hung, S.Y. and Chen, C.Y., “Mammographic case base applied for supporting image diagnosis of breast lesion,” Expert Systems with Applications, vol.30, no.1, 2006, pp.93-108.
[44]Hunt, J., “Case based diagnosis and repair of software faults,” Expert System, vol.14, no.1, 1997, pp.15-23.
[45]Istvan, J. and Matarazzo, J.D., “Tobacco, alcohol, and caffeine use: a review of their relationships,” Psychological Bulletin, vol.95, no.2, 1984, pp.301-326.
[46]Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H. and Casper, R.F., “Case-based Reasoning in IVF: Prediction and Knowledge Mining,” Artificial Intelligence in Medicine, vol.12, no.1, 1998, pp.1-24.
[47]Kass, G. V., “An exploratory technique for investigatin large quantities of categorical data,” Applied Statistics, vol.29, no.2, 1980, pp.119-127.
[48]Khokhar, N., “Serum aminotransferase levels and platelet count as predictive factor of fibrosis and cirrhosis in patients with chronic hepatitis C infection,” Journal of Pakistan Medical Association, vol.53, no.3, 2003, pp.101-104.
[49]Kim, Y.S., Sohn, S.Y., and Yoon, C.N., “Screening test data analysis for liver disease prediction model using growth curve,” Biomedicine and Pharmacotherapy, vol.57, no.10, 2003, pp.482-488.
[50]Kolodner, J., Case-Based Reasoning, San Francisco: Morgan Kaufmann Publishers, 1993.
[51]Langile, J.K., “Interrelationships among preventive health behaviors: a test of competing hypotheses,” Public health reports, vol.94, no.3, 1979, pp.216-225.
[52]Li, C.P., Lee, F.Y., Hwang, S.J., Lu, R.H., Lee, W.P., Chao, Y., Wang, S.S., Chang, F.Y., Jacqueline, W.P. and Lee, S.D., “Spider angiomas in patients with liver cirrhosis: role of vascular endothelial growth factor and basic fibroblast growth factor,” World Journal of Gastroenterol, vol.9, no.12, 2003, pp.2832-2835.
[53]Mehdi, M. and Owrang, O., “Case discovery in case-based reasoning systems,” Information System Management, vol.15, no.1, 1998, pp.74-78.
[54]Mondelli, M. U., Cerino, A. and Cividini, A., “Acute hepatitis C: diagnosis and management,” Journal of Hepatology, vol.42, no.1, 2005, pp.S108-S114.
[55]Morgan, J. N. and Sonquist, J. A., “Problems in the analysis of survey data, and a proposal,” Journal of the American Statistical Association, vol.58, no.302, 1963, pp.415-434.
[56]Omagari, K., Kadokawa, Y., Masuda, J., Egawa, I., Sawa, T., Hazama, H., Ohba, K., Isomoto, H., Mizuta, Y., Hayashida, K., Murase, K., Kadota, T., Murata, I. and Kohno, S., “Fatty liver in non-alcoholic non-overweight Japanese adults: incidence and clinical characteristics,” Journal of Gastroenterology Hepatology, vol.17, no.10, 2002, pp.1098-1105.
[57]Petricoin, E.F. and Liotta, L.A., “Proteomic analysis at the bedside: early detection of cancer,” Trends in Biotechnology, vol.20, no.12, 2002, pp.30-34.
[58]Quinlan, J. R., “Discovering rules by induction from large collections of examples, in D. Michie (ed.),” Expert Systems in the Micro Electronic Age, Edinburgh University Press, 1979, pp.168-201.
[59]Ralph, B., “An introduction to case-based reasoning,” AI Expert, vol.8, 1991, pp.43-49.
[60]Rumelhart, D. E., Hinton, G. E., Williams, R. J., “Learning internal representations by error propagation,” Parallel distributed processing: explorations in the microstructure of cognition, vol.1, MIT Press, Cambridge, MA, 1986, pp.318-362.
[61]Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill, 1980.
[62]Schank, R.C., Dynamic Memory: A Theory of Reminding and Learning in Computers and People, New York: Cambridge University Press, 1983.
[63]Slade, S., “Case-Based Reasoning: A Research Paradigm,” AI Magazine, vol.12, no.1, 1991, pp.42-55.
[64]Sorensen, G., Rigotti, N., Rosen, A., Pinney, J., and Prible, R., “Effects of a worksite nonsmoking policy: evidence for increased cessation,” American Journal of Public Health, vol.81, no.2, 1991, pp.202-204.
[65]Tapp, J. T. and Goldenthal, P., “A factor analytic study of health habits,” Preventive medicine, vol.11, no.6, 1982, pp.724-728.
[66]U.S. Department of Health and Human Services, Promation health/preventing disease: objectives for the nation, Washington, DC: Public Health Service, 1980, pp.143-154.
[67]Walsh, T.L., Homa, K., Hanscom, B., Lurie, J., Sepulveda, M.G. and Abdu, W., “Screening for depressive symptoms in patients with chronic spinal pain using the SF-36 Health Survey,” The Spine Journal , vol.6, no.3, 2006, pp.316-320.
[68]Ware, J.E.Jr. and Sherbourne, C.D., “The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection,” Medical Care, vol.30, no.6, 1992, pp.473-483.
[69]Winget, M.D., Baron, J.A., Spitz, M.R., Brenner, D.E, Warzel, D., Kincaid, H., Thornquist, M. and Feng, Z., “Development of common data elements: the experience of and recommendations from early research network,” International Journal of Medical Informatics, vol.70, no.1, 2003, pp.41-48.
[70]Xu, L.D., “An integrated rule- and case-based approach to AIDS initial assessment,” International Journal of Bio-Medical Computing, vol.40, no.3, 1996, pp.197-207.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林慶翰(1992)。公共關係的真諦。人事管理,第二十九卷第九期,頁4-14。
2. 肖小穗(2000)。權力語藝批評初探。傳播文化,8期,頁149-175。
3. 吳宜蓁(2002a)。「A錢」與「清廉」之間--解讀興票案的危機情境、危機反應策略與媒體效能。傳播文化,9期,頁203-238。
4. 吳宜蓁(2000)。危機溝通策略與媒體效能之模式建構-關於腸病毒風暴的個案研究。新聞學研究,62期,頁1-34。
5. 成天明(1998)。「政府公共關係研究」之探析。立法院院聞,26眷11期,頁71-84。
6. 金耀基(1992)。「關係和網絡的建構:一個社會學的詮釋」。二十一世紀,12期,8月,頁143-57。
7. 紀效正(1993)。政府官員與新聞記者互動之研究。廣告學研究,2期,頁101-122。
8. 孫本初(1996)。危機管理策略之探討。人事月刊,130期。頁17-29。
9. 孫秀蕙(1996)。公關人員與媒體之間的互動模式對於議題管理策略的啟示以非營利性的弱勢團體為例。廣告學研究,第八集,頁153-173。
10. 秦琍琍(2000)。企業論述與公共關係-從語藝觀點出發。廣告學研究,15期,頁27-48。
11. 習賢德(1994)。公共事務報導的理論與實際。傳播文化,3期,頁133-161。
12. 陳世敏(1992)。侯選人形象與選民投票行為。新聞學研究,46期,頁149-168。
13. 游梓翔、溫偉群(2002b)。從語藝取徑評析《獨家報導》在璩美鳳光碟事件中的形象修護策略。世新大學學報,12期,頁209-231。
14. 黃鈴媚(1997)。談判者的子問題對口頭說服策略運用的影響。世新大學學報,7期,頁267-317。
15. 黃懿慧(1999)。西方公共關係理論學派之探討--90年代理論典範的競爭與辯論。廣告學研究,12期,頁1-37。