跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡府伯
研究生(外文):Fu-Po Tsai
論文名稱:高效能熱傳系統-脈動式熱迴路裝置之研究
論文名稱(外文):Experimental Study of A High Performance Heat Transport System-Pulse Thermal Loop
指導教授:黃博全黃博全引用關係
指導教授(外文):Po-Chuan Huang
口試委員:王啟川楊建裕
口試委員(外文):Chi-Chuan WangChien-Yuh Yang
口試日期:2007-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:脈動式熱迴路裝置半被動式熱傳裝置蒸汽壓驅動力
外文關鍵詞:Pulse Thermal LoopSemi-Passive Heat Transport SystemVapor-Pressure Force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
現代化高科技產品由於微小化及其效率需不斷提升,面臨散熱不易的嚴重問題,一種名為脈動熱迴路裝置(Pulse Thermal Loop, 簡稱PTL) 的展新高效能半被動式的熱傳裝置,藉助蒸汽壓力脈動地推動工作流體來回循環於系統迴路間,能將大量的熱由熱源傳至熱沉,達到高散熱冷卻的目的。由於裝置設計具彈性、高熱傳效能與具競爭成本,脈動熱迴路已被發現可廣泛應用於各類高階散熱或熱控制系統上。
本研究開發此一種熱傳性能甚高於傳統熱管之高效能脈動式熱迴路裝置。換句話說,本研究目的以實驗方式對脈動熱迴路裝置的熱傳性能進行有系統的研究探討,其工作內容包括:(1)參考現有文獻以實作方式研製脈動式熱迴路裝置雛型PTL系統,(2)建立PTL熱傳性能實驗測試系統,(3) PTL蒸發器內部兩相流流場的可視化觀測,以了解在穩定脈動運作時,蒸發器內部壓力與溫度的變化,(4)探討不同設計參數,如工作流體、熱負荷、PTL運作控制模式及傳熱距離等,對脈動式熱迴路裝置傳熱性能的影響。
研究結果顯示PTL系統利用兩蒸發器間的蒸氣壓差作為驅動力,使工作流體不斷的於兩蒸發器與冷凝器間來回交替(脈衝)運行,將負荷從蒸發器傳送到冷凝器後排出,達成傳熱冷卻之功效。本研究證明了(1)不需仰賴機械泵,系統產生之壓力差足以推動冷媒循環,並抵抗管路、閥件等產生之阻抗。(2)定壓差控制時,溫度隨負載增加而遞增、脈動頻率隨負載增加而遞增。(3)定高壓控制時,負載增加時溫度不變,脈動頻率隨負載增加而遞增。(4) 定時控制時,溫度隨負載增加而遞增、脈動頻率不變,而溫度增加的幅度比定壓差控制時要來的大。
Modern high-tech products thermal management is facing considerable challenges in the wake of miniaturizing of components leading to higher demands on net heat flux dissipation. A new high performance semi-passive heat transport system (called Pulse Thermal Loop (PTL), which has carrying capacity by exploiting large vapor-pressure forces to circulate (pulsatilely) the working fluid. Due to the flexibility in design, cost effectiveness and excellent thermal performance, PTL can meet a variety of the requirements of advanced cooling and thermal control system.
In this study, a high-performance pulse thermal loop (PTL) device, which have the potential to transport significantly higher heat loads than current heat pipe was develped. In other words, A systematic experimental investigation is conducted to explore the thermal performance of PTL. This research work includes the following items: (1) the PTL prototype is tried to be developed by implementation, (2) the experimental test apparatus is set up for the purpose of performance examination of PTL, (3) the visual observation of two-phase flow pattern inside the PTL evaporators is performed for the understanding of vapor pressure and temperature histories at a steady periodic state, (4) the effects of various design parameters, e.g., working fluid, heat loading, operating mode, and heat transfer distance, on the PTL performance characteristics are analyzed.
The experimental results show can drive the circles, Make the working fluid evaporating in evaporator and transfer the heat from evaporator to condenser, and it can be continual operation and pulsating on steady. This experimental system has proved (1)The PTL device does not need the mechanical pump, the pressure difference that produced from PTL system is enough to push refrigerant to run cyclically , and overcom resist impedance coming from the pipeline, valve, etc.. (2)Operating under the control of fixed-ΔP, system temperature and pulsating frequency increases with heat loading. (3)Operating under the control of fixed Pmax, pulsating frequency increases with heat loading but the temperature maintain constant. (4)Operating under the control of fixed ω, temperature increases with heat loading which the increases temperature is larger then that in fixed-ΔP control, while the pulsating frequency keep constant.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xi
第一章 緒 論 1
1.1 前言 1
1.2 相關熱迴路文獻回顧 4
1.3 研究目的與方法 10
第二章 脈動式熱迴路原理介紹 12
2.1 脈動式熱迴路結構與基本運作原理簡介 12
2.2 脈動式熱迴路的熱傳理論 14
2.2.1 相變熱傳理論 14
2.2.2 PTL脈動式熱迴路之熱傳特性 18
2.3 影響PTL運作重要的設計參數 19
2.3.1 溫差限制(ΔT Limit) 20
2.3.2 循環限制(Circulation Limit) 20
2.3.3 脈衝極限(Pulse Limit) 20
2.3.4 PTL系統熱洩漏限制(Heat Leak Limit) 21
2.3.5 填充比率 21
2.3.6 工作流體性質 22
2.3.7 重力場的影響 22
2.3.8 傳輸管線長度的影響 22
2.3.9 控制模式 23
2.4 PTL系統之優點 23
第三章 PTL熱傳裝置系統之設計與製作 24
3.1 可視化雙蒸發器組製作 24
3.2 冷凝器製作 26
3.3 傳輸管線製作 27
3.4 控制閥(Control Valve) 27
3.5 逆止閥 28
3.6 工作流體 29
3.7 冷媒定量充填系統 30
3.7.1 抽真空 30
3.7.2 冷媒充填 31
第四章 PTL實驗之規劃與測試 33
4.1 PTL熱傳裝置實驗系統設計 33
4.2 環境控制系統 35
4.2.1 恆溫水槽(冷端) 35
4.2.2 負載供應系統(熱端) 36
4.3 實驗控制及測試系統 37
4.3.1 壓力感測器 37
4.3.2 溫度感測器 38
4.3.3 資料擷取器 39
4.3.4 PC個人電腦 39
4.3.5 DDC直接數位控制器 40
4.3.6 定時切換器 41
4.3.7 雙組輸出直流隔離轉換器 41
4.4 實驗方法 42
4.4.1定壓差控制 43
4.4.2定高壓控制 43
4.4.3定時控制 43
4.5 實驗系統 44
4.6 實驗步驟 45
4.6.1 系統管線組裝連結 46
4.6.2 系統測試調整 47
4.6.3 系統試運轉 47
4.6.4 變更熱源強度實驗數據 48
4.6.5 變更控制方式實驗數據 48
4.6.6 變更傳輸長度實驗數據 48
4.6.7 變更工作流體實驗數據 49
4.6.8 實驗數據分析探討 49
第五章 實驗結果與討論 50
5.1 PTL雙蒸發器運作之可視化觀測 50
5.2 定壓差控制實驗模組 54
5.2.1 固定加熱負載100W時改變控制壓差值之影響 54
5.2.2 固定加熱負載200W時改變控制壓差值之影響 60
5.2.3 固定控制壓差值4bar時改變加熱負載之影響 68
5.3 定高壓力控制實驗模組 70
5.3.1 固定控制高壓值14bar時改變負載之影響 71
5.4 定時切換控制實驗模組 75
5.4.1 固定定時切換控制50秒時改變負載之影響 76
5.5 變更傳輸距離對系統之影響 81
5.5.1 固定壓差設定及固定負載時增加傳輸距離 81
5.5.2 固定定時控制設定及固定負載時增加傳輸距離 82
5.6 更換工作流體對PTL之影響 83
第六章 結論 86
參考文獻 91
附錄 93
符號彙整 96
[1]Weislogel, M. M., “Passive Oscillatory Heat Transport Systems,” Space Technology and Applications International Forum, Albuquerque, New Mexico, Feb. 2002.
[2]Weislogel, M. M. and Bacich, M. A., “A High Performance Semi-Passive Cooling System: The Pulse Thermal Loop,” ASME Heat Transfer/Fluids Engineering Summer Conference, July 11-15, 2004.
[3]Weislogel, M. M. and Hitch, M. A., “High Performance Oscillatory Heat Transport Systems,” 37th AIAA Thermophysics Conference, paper 20029, Portland, Jun. 2004.
[4]Bugby, D., Wrenn, K., Wolf, D., Kroliczek, E., Yun, J., Krein, S. and Mark, D., “Multi-Evaporator Hybrid Loop Heat Pipe for Small Spacecraft Thermal Management,” COTS, July 2005.
[5]Akichi, H., Us Patent Number 4921041﹐1990.
[6]Tamburini, P., “T-System: Proposal of a New Concept Heat Transport System,” Proc. 3rd Int. Heat Pipe Conference, Palo Alto, CA, pp. 346-353, May 1978.
[7]Weislogel, M. M., “Semi-Passive Pulse Energy Storage System,” US Pat. No. 5127471, July 7, 1992.
[8]Lund, K., Baker, K. and Weislogel, M. M., “The Vapor-Pressure Loop Concept for Space Systems Heat Transport,” 1st Int. Conf. on Aerospace HX Technol., Palo Alto, CA, Feb. 1993.
[9]Cargille, D. B., “Thermal Transport Oscillator,” US Pat. No. 5,257,660, Nov. 2, 1993.
[10]Garriss, J. E. and Garriss, E., “Passive Heat-Transport System,” US Pat. No. 4,128,123, Dec. 5, 1978.
[11]Paris, A. D., Bhandari, P. and Birur, G. C., “A High Temperature Mechanically Pumped Fluid Loop for Space Applications – Working Fluid Selection,” Jet Propulsion Laboratory, California Institute of Technology, 2004.
[12]Carey, V. P., "Liquid-Vapor Phase-Change Phenomena,” Hemisphere, 1992.
[13]Rohsenow, W. M., “A Method of Correlating Teat Transfer Data for Surface Boiling of Liquids,” Trans. ASME, Vol. 84, pp. 969, 1962.
[14]劉中哲,”冷媒於冷凍空調系統之應用介紹”,工業技術研究院-HCFC替代冷媒技術研討會簡報資料,2001
[15]“Thermophysical Properties of Refrigerants,” ASHRAE Handbook, Chapter 20 , 2005.
[16]Weislogel, M. M., “Pulse Thermal Loop,” US Pat. Filed, Nov. 16, 2000.
[17]Kirshberg, J., Yerkes, K., Trebotich, D. and Liepmann, D., “Cooling Effect of a Mems Based Micro Capillary Pumped Loop for Chip-Level Temperature Control,” ASME Books, Micro-Electro-Mechanical Systems, Vol. 2, 2000.
[18]Sert, C. and Besko, A., “Oscillatory Flow Forced Convection in Micro Heat Spreaders,” Numerical Heat Transfer, Part A, Vol. 42, pp. 685-705, 2002.
[19]Swanson, T. D. and Birur, G. C., “NASA Thermal Control Technologies for Robotic Spacecraft,“ Applied Thermal Engineering, Vol. 23, pp. 1055-1065, 2003.
[20]Park, C., Zuo, J., Rogers, P. and Perez, J., “Two-Phase Flow Cooling for Vehicle Thermal Management,” SAE International, 2005.
[21]Vasiliev, L. L., “Heat Pipes in Modern Heat Exchangers,” Applied Thermal Engineering, Vol. 25, pp. 1-19, 2005.
[22]Bugby, D. and Aerospace, S., “A Hybrid Loop Heat Pipe Cooling System Marries The Controllability/Expandability of Capillary Pumped Loop Schemes with The Operational Robustness of a Loop Heat Pipe,” COTS Journal, July 2005.
[23]Jassim, E. W., NewelL, T. A. and Chato, J. C., “ Two-Phase Flow Visualization in Chevron and Bumpy Style Flat Plate Heat Exchangers,” Heat Transfer Engineering, Vol. 27, pp. 20-27, 2006.
[24]Park, C. and Vallury, A., “Advanced Hybrid Cooling Loop Technology for High Performance Thermal Management,” 4th International Energy Conversion Engineering Conference, pp. 26-29, San Diego, CA, June 2006.
[25]Sobierska, E., Kulenovic, R., Mertz, R., and Groll, M., “Experimental Results of Flow Boiling of Water in a Vertical Microchannel,” Experimental Thermal and Fluid Science, Vol. 31, pp. 111-119, 2006.
[26]陳世雄、吳科賢,”一種迴路式熱管的實驗與性能探討”, 碩士論文,國立成功大學航空太空工程研究所,2005
[27]黃博全、陳理定、涂堂烘,“閉迴路型脈動式熱管之研製與性能測試”,碩士論文,國立清華大學動力機械工程研究所,2005
[28]陳世雄,吳科賢,陳慶峰,“一種迴路式熱管的實驗性能與探討”,碩士論文,國立成功大學航空太空工程研究所,2005
[29]黃博全、游博淮,“氧化銅奈米流體、水、甲醇應用於閉迴路型脈動式熱管之研究”,碩士論文,國立台北科技大學冷凍空調工程系,2006
[30]郭鴻森,李基禎,陳慶峰,“二相蒸氣腔體散熱器之實驗分析”,碩士論文,大同大學機械工程研究所,2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top