(3.230.143.40) 您好!臺灣時間:2021/04/23 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李子毅
研究生(外文):Tz-Yi Li
論文名稱:微奈米竹炭混合水溶液之冷凍真空乾燥製程研究
論文名稱(外文):System Process of the Vacuum Freeze Drying for Micro/Nano Bamboo Charcoal Aqueous Solution
指導教授:鄭鴻斌鄭鴻斌引用關係
口試委員:黃建彰方宏聲陳宗欣
口試日期:2007-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:143
中文關鍵詞:冷凍真空乾燥竹炭凍乾
外文關鍵詞:vacuum freeze dryingbamboo charcoalfreeze drying
相關次數:
  • 被引用被引用:4
  • 點閱點閱:394
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
製備微奈米材料常存在乾燥的問題,由於將微奈米材料進行充分的乾燥,再行添入各種基材中,可全面提升原有材料之性能,故此處所進行的乾燥技術極為重要。若以維持產品品質與乾燥程度而言,冷凍真空乾燥可使乾燥後的產品有極高的潔淨度與乾燥度。由於其製備過程處與真空狀態,環境中的氣體分子少、密度低,故可使製品保持原有結構,且具高復液性,摻雜入主原料後可充分地進行混合,使產品效能得以提升。本論文針對20%竹炭漿料進行冷凍真空乾燥製程研究,首先以玻璃杯裝盛竹炭漿料進行漿料之共晶點測試與初級乾燥時間的試驗並使用CCD觀測過程樣品的冰線變化,以測得共晶點溫度進而設定初級乾燥棚板溫度,隨後增長初級乾燥時間並固定二級乾燥條件後,以運轉成本與乾燥效率為考量將初級乾燥設定為30分鐘。二級乾燥試驗則是利用不鏽鋼杯與銅杯探討不同材質在不同棚板溫度下對於乾燥速率的影響並找出適當二級乾燥加熱溫度與時間。試驗結果發現此類混合水溶液水份去除的關鍵在於二級乾燥的升溫加熱,實驗曲線二級乾燥過程中樣品出現第二次升溫表示已有近70%的水份遭去除。就容器材質與二級乾燥加熱溫度與時間而言,建議使用鋼杯在二級乾燥予以60℃加熱可有較佳的乾燥速率以及較少的竹炭帶離,而製程中已乾燥竹炭粉末勢必被帶離,可降低溶液深度及減少已乾燥之竹炭遭下層欲昇華水分子帶離之機率。
Drying problem often occurred in preparing micro/nano material, since adding fully dried micro/nano material to various substrates could improve performance of original material completely, hence drying technology here became critically important. In terms of maintaining product quality and drying extent, vacuum freeze drying could ensure dried product with very high cleanliness and dryness. As its preparation process was in vacuum state, gas molecules in ambience were few and of low density, thus product could retain original structure, and have high liquid recovery property, when doped in main material, they could be fully mixed so as to improve product performance. This thesis studied vacuum freeze drying process of 20% bamboo charcoal slurry, first contain bamboo charcoal slurry in glass beaker to run eutectic point test and initial drying time test and observe ice line change of sample with CCD, determine eutectic point and thus set initial drying shelf temperature, then increase initial drying time and fix secondary drying condition, set initial drying at 30min from perspective of running cost and drying efficiency. Secondary drying test used stainless steel cup and copper cup to investigate effect of various material on drying rate at varied shelf temperature and find appropriate heating temperature and time for secondary drying. Test result found that key point of removing water from such kind of mixed aqueous solution lied in heat ramping of secondary drying, in test curve, there emerged the secondary temperature ramping during secondary drying, indicating that near 70% moisture was removed. In terms of container material and secondary drying heating temperature and time, it was recommended to use steel cup and heat at 60℃ during secondary drying, resulted in better drying rate and fewer bamboo charcoal removal, and bamboo charcoal powder already dried in process would be inevitably carried away, so as to reduce solution depth and minimize probability of dried bamboo charcoal being carried away by underlying water molecules to sublime.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 3
1.4 文獻與技術回顧 4
第二章 冷凍真空乾燥原理與應用 7
2.1 乾燥方式 7
2.2 冷凍真空乾燥原理 8
2.2.1 預凍過程 8
2.2.2 初級乾燥過程 10
2.2.3 二級乾燥過程 11
2.3 冷凍真空乾燥製程應用 14
2.3.1 食品保存方面之應用 14
2.3.2 生物製品與生醫材料方面之應用 14
2.3.3 微奈米材料科學方面之應用 15
第三章 冷凍真空乾燥製程研究設備 17
3.1 冷凍系統 18
3.1.2 二元冷凍系統 18
3.1.3 直立式超低溫冷凍櫃 18
3.1.4 蒸發盤管 19
3.1.5 恆溫循環槽與棚板 20
3.2 真空系統 21
3.2.1 真空腔體 21
3.2.2 真空抽氣系統 22
3.2.3 真空壓力計 22
3.2.4 真空導入裝置 23
3.3 量測系統 24
3.3.1 溫度感測器與樣品溫層測量裝置 24
3.3.2 CCD觀測儀 25
第四章 實驗方法與結果討論 26
4.1 實驗方法 26
4.1.1 共晶點溫度量測 26
4.1.2 凍乾製程試驗 27
4.2 實驗步驟 29
4.3 實驗結果與討論 33
4.3.1 共晶點溫度試驗 33
4.3.2 20%竹炭漿料初級乾燥試驗 34
4.3.2.1 初級乾燥進行抽氣30分鐘 34
4.3.2.2 初級乾燥進行抽氣60分鐘 35
4.3.2.3 初級乾燥進行抽氣120分鐘 36
4.3.2.4 初級乾燥進行抽氣240分鐘 37
4.3.2.5 初級乾燥進行抽氣480分鐘 39
4.3.2.6 初級乾燥進行抽氣720分鐘 40
4.3.2.7 初級乾燥30、240、720分鐘及二級乾燥60分鐘 43
4.3.3 玻璃杯20%竹炭漿料二級乾燥試驗 46
4.3.3.1 玻璃杯之二級乾燥棚板加熱85℃抽氣120分鐘 46
4.3.3.2 玻璃杯之二級乾燥棚板加熱85℃抽氣240分鐘 47
4.3.3.3 玻璃杯之二級乾燥棚板加熱85℃抽氣360分鐘 50
4.3.3.4 玻璃杯之二級乾燥棚板加熱85℃抽氣480分鐘 51
4.3.3.5 玻璃杯之二級乾燥棚板加熱85℃抽氣600分鐘 53
4.3.4 不鏽鋼杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅰ 54
4.3.4.1不鏽鋼杯之二級乾燥棚板加熱85℃抽氣240分鐘 54
4.3.4.2不鏽鋼杯之二級乾燥棚板加熱85℃抽氣360分鐘 56
4.3.4.3不鏽鋼杯之二級乾燥棚板加熱85℃抽氣480分鐘 58
4.3.5 銅杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅰ 60
4.3.5.1 銅杯之二級乾燥棚板加熱85℃抽氣240分鐘 60
4.3.5.2 銅杯之二級乾燥棚板加熱85℃抽氣360分鐘 62
4.3.5.3 銅杯之二級乾燥棚板加熱85℃抽氣480分鐘 64
4.3.6 不鏽鋼杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅱ 66
4.3.6.1 不鏽鋼杯之二級乾燥棚板加熱60℃抽氣240分鐘 66
4.3.6.2 不鏽鋼杯之二級乾燥棚板加熱60℃抽氣360分鐘 68
4.3.6.3 不鏽鋼杯之二級乾燥棚板加熱60℃抽氣480分鐘 70
4.3.7 銅杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅱ 72
4.3.7.1 銅杯之二級乾燥棚板加熱60℃抽氣240分鐘 72
4.3.7.2 銅杯之二級乾燥棚板加熱60℃抽氣360分鐘 74
4.3.7.3 銅杯之二級乾燥棚板加熱60℃抽氣480分鐘 76
4.3.8 不鏽鋼杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅲ 78
4.3.8.1 不鏽鋼杯之二級乾燥棚板加熱40℃抽氣240分鐘 78
4.3.8.2 不鏽鋼杯之二級乾燥棚板加熱40℃抽氣360分鐘 80
4.3.8.3 不鏽鋼杯之二級乾燥棚板加熱40℃抽氣480分鐘 82
4.3.8.4 不鏽鋼杯之二級乾燥棚板加熱40℃抽氣600分鐘 84
4.3.9 銅杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅲ 86
4.3.9.1 銅杯之二級乾燥棚板加熱40℃抽氣240分鐘 86
4.3.9.2 銅杯之二級乾燥棚板加熱40℃抽氣360分鐘 88
4.3.9.3 銅杯之二級乾燥棚板加熱40℃抽氣480分鐘 90
4.3.9.4 銅杯之二級乾燥棚板加熱40℃抽氣600分鐘 92
4.3.9.5 銅杯之二級乾燥棚板加熱40℃抽氣720分鐘 94
4.3.10 不鏽鋼杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅳ 96
4.3.10.1 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣240分鐘 96
4.3.10.2 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣360分鐘 98
4.3.10.3 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣480分鐘 100
4.3.10.4 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣600分鐘 102
4.3.10.5 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣720分鐘 104
4.3.10.6 不鏽鋼杯之二級乾燥棚板加熱20℃抽氣840分鐘 106
4.3.11 銅杯裝盛20%竹炭漿料二級乾燥試驗 Part Ⅳ 108
4.3.11.1 銅杯之二級乾燥棚板加熱20℃抽氣240分鐘 108
4.3.11.2 銅杯之二級乾燥棚板加熱20℃抽氣360分鐘 110
4.3.11.3 銅杯之二級乾燥棚板加熱20℃抽氣480分鐘 112
4.3.11.4 銅杯之二級乾燥棚板加熱20℃抽氣600分鐘 113
4.3.11.5 銅杯之二級乾燥棚板加熱20℃抽氣720分鐘 115
4.3.11.6 銅杯之二級乾燥棚板加熱20℃抽氣840分鐘 117
4.3.12 加熱凍乾後竹碳粉末進行凍乾製程試驗 119
4.4 85℃熱風乾燥20%竹炭漿料 121
4.5 綜合分析 123
第五章 結論 135
第六章 未來研究方向及建議 136
參考文獻 137
[1]D. F. Dyer, and J. E. Sunderland, “Heat and mass transfer mechanism in sublimation dehydration”, Journal of Heat Transfer, vol. 90, pp. 379, 1968.
[2]M. Karel, “Heat and mass transfer in freeze-drying”, in S. A. Goldblithm, L. Rey, and W. W. Rothmayr (Eds.), “Freez-drying and Advanced Food Technology”, Academic Press, New York, pp. 177-202, 1975.
[3]J. D. Mellor, “Fundamentals of freeze-drying”, Academic Press, New York, 1978.
[4]N. F. H. He, and T. J. Roseman, “Lyophilization of pharmaceutical injections: theoretical physical model”, Journal of Pharmaceutical Science, vol. 68, pp. 1170-1174, 1979.
[5]S. L. Nail, “The effect of chamber pressure on heat transfer in the freeze drying of parenteral solutions”, Journal of the Parenteral Drug Association, vol. 34, pp. 115-138, 1980.
[6]M. L. Pikal, M. L. Roy, and S. Shah, “Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial”, Journal of Pharmaceutical Science, vol. 73, pp. 1224-1237, 1984.
[7]M. J. Millman, A. I. Liapis, and J. M. Marchello, “An analysis of the lyophilization process using a sorption-sublimation model and various operational solutions”, AICHE Journal, vol. 31, pp. 1594-1604, 1985.
[8]M. J. Pikal, “Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and computer simulation of freeze drying”, Journal of Parenteral Science and Technology, vol. 39, pp. 115-138, 1985.
[9]J. I. Lombrana, and J. M. Diaz, “Heat programming to improve efficiency in a batch freeze-drier”, Chemical Engineering Journal, vol. 35, pp. B23-B30, 1987.
[10]T. A. Jennings, “Discussion of primary drying during lyophilization”, Journal of Parenteral Science and Technology, vol. 42, pp. 118-121, 1988.
[11]W.-Y. Kuu, J. McShane, and J. Wong, “Determination of mass transfer coefficients during freeze drying using modeling and parameter estimation techniques”, International Journal of Pharmaceutic, Vol. 124, pp. 241-252, 1995.
[12]S. Jackson, S.L. Rickter, C.O. Chichester, “Freeze drying of fruits”, Food Technology, vol. 11, pp. 468-473, 1957.
[13]D. A. Copson, “Microwave sublimation of foods”, Food Technology, vol. 12 (6), 270-272, 1958.
[14]M.W. Hoover, A. Markantonatos, W.N. Parker, Engineering aspects of using UHF dielectric heating to accelerate the freeze-drying of foods, Food Technol. 20 (6) (1966) 107–110.
[15]M.W. Hoover, A. Markantonatos, W.N. Parker, “UHF dielectric heating in experimental acceleration of freezedrying of foods”, Food Technol. 20 (6) (1966) 103–107.
[16]Y.H. Ma, P. Peltre, “Freeze dehydration by microwave energy: Part I. Theoretical investigation”, AIChE J. 21(2) (1975) 335–344.
[17]Y.H. Ma, P. Peltre, “Freeze dehydration by microwave energy: Part II. Experimental investigation”, AIChE J. 21 (2) (1975) 344–350.
[18]T.K. Ang, J.D. Ford, D.C.T. Pei, “Microwave freeze-drying of food: a theoretical investigation”, Int. J. Heat Mass Transfer 20 (5) (1977) 517–526.
[19]T.K. Ang, D.C.T. Pei, J.D. Ford, “Microwave freeze-drying of food: an experimental investigation”, Chem. Eng. Sci. 32 (1977) 1477–1489.
[20]J. Sochanske, J. Goyette, T. Bose, C. Akyel, R. Bosisio, “Freeze dehydration of foamed milk by microwave”, Drying Technol. 8 (1990) 1017–1037.
[21]J.W. Gould, E.M. Kenyon, “Gas discharge and electric field strength in microwave freeze-drying”, J. Microwave Power 6 (2) (1971) 151–167.
[22]T.K. Ang, J.D. Ford, D.C.T. Pei, “Optimal modes of operation for microwave freeze drying of food”, J. Food Sci. 43 (1978) 648–649.
[23]T.N. Chang, Y.H. Ma, “Application of optimal control strategy to hybrid microwave and radiant freeze drying system”, in: Drying 85, Hemisphere, Washington, DC, 1985, pp. 249–253.
[24]Y.H. Ma, P. Peltre, “Mathematical simulation of a freeze drying process using microwave energy”, in: Food Preservation AIChE Symposium Series, vol. 69, 1973, pp. 47–54.
[25]S.D. Chen, R.Y. Ofoli, E.P. Scott, J. Asmussen, “Volatile retention in microwave freeze-dried model foods”, J. Food Sci. 58 (1993) 1157–1161.
[26]M.H. Shi, Z.H. Wang, “A sublimation–condensation theory for the microwave freeze drying of unsaturated porous media”, J. Southeast Univ. (China) 25 (4) (1995) 92–98 (in Chinese).
[27]Z.H. Wang, M.H. Shi, “Analysis of heat and mass transfer for microwave freeze drying of unsaturated porous media”, J. Chem. Ind. Eng. (China) 47 (2) (1996) 131–136 (in Chinese).
[28]Z.H. Wang, M.H. Shi, “Effects of heating methods on vacuum freeze drying”, Drying Technol. 15 (5) (1997) 1475– 1498.
[29]Z.H. Wang, M.H. Shi, “Numerical study on sublimation– condensation phenomena during microwave freeze drying”, Chem. Eng. Sci. 53 (18) (1998) 3189–3197.
[30]Z.H. Wang, M.H. Shi, “Microwave freeze drying characteristics of beef”, Drying Technol. 17 (3) (1999) 433–447.
[31]H.B. Arsem, Y.H. Ma, “Aerosol formation during the microwave freeze dehydration of beef”, Biotechnol. Progr. 1 (1985) 104–110.
[32]H.B. Arsem, Y.H. Ma, “Simulation of a combined microwave and radiant freeze dryer”, Drying Technol. 8 (1990) 993–1016.
[33]Z. Tao, H. Wu, G. Chen, H. Deng, “Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying”, International Journal of Heat and Mass Transfer 48 (2005) 561–572.
[34]A.I. Liapis, R. Bruttini, “Freeze-drying of pharmaceutical crystalline and amorphous solutes in vials: Dynamic multi-dimensional models of the primary and secondary drying stages and qualitative features of the moving interface”, Drying Technology 1995. 13, 43-72.
[35]P. Sheehan, A.I. Liapis, “Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: Numerical results obtained from the solution of a dynamic and spatially multidimensional lyophilization model for different operational policies”, Biotechnology and Bioengineering 1998. 60 (6), 712-728.
[36]H. Sadikoglu, A.I. Liapis, “Crosser. O.K. Optimal control of the primary and secondary drying stages of bulk solution freeze drying in trays”, Drying Technology 1998, 16, 399-431.
[37]H. Sadikoglu, “Dynamic Modeling and Optimal Control of the Primary and Secondary Drying Stages of Freeze Drying of Solution in Trays and Vials”, Ph.D. Dissertation. Department of Chemical Engineering, University of Missouri-Rolla. Missouri, 1998.
[38]R.J. Litchfield, A.I. Liapis, “An adsorption-sublimation model for a freeze dryer”, Chemical Engineering Science 1979. 34. 1085-1090.
[39]M.J. Millman, A.I. Liapis, J. M. Marchello, “An analysis of the lyophilization process using a sorption-sublimation model and various operational policies”, AIChE Journal 1985. 31. 1594-1604.
[40]M.M. Tang, A.I. Liapis, J.M. Marchello, “A multidimensional model describing the lyophilization of a pharmaceutical product in a vial”, ln Proceedings of the Fifth International Drying Symposium, Mujumdar, A.S., Ed; Hemisphere Publishing Co.: New York, 1986, 57-65.
[41]R. Bruttini, G. Rovero, G. Baldi, “Experimentation and modeling of pharmaceutical lyophilization using a pilot plant”, Chemical Engineering Journal 1994. 45. B67-B77.
[42]A.I. Liapis, R. Bruttini, “A theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: Comparison between experimental data and theory”, Separations Technology 1994, 4, 144-155.
[43]A.I. Liapis, R. Bruttini, “Freeze drying”, In Handbook of Industrial Drying, Vol. 2; Mujumdar, A.S., Ed.: Marcel Dekker: New York, 1995; 309-343.
[44]A.I. Liapis, M.J. Pikal, R. Bruttini, “Research and development needs and opportunities in freeze drying”, Drying Technology 1996, 14. 1265-1300.
[45]H. Sadikoglu, A.I. Liapis, “Mathematical modeling of the primary and secondary drying stages of bulk solution freeze drying in trays: Parameter sestimation and model discrimination by comparison of theoretical results with experimental data”, Drying Technology 1997, 15, 791-810.
[46]H. Sadikoglu, M. Ozdemir, M. Seker, “Optimal control of the primary drying stages of freeze drying of solutions in vials using variational calculus”, Drying Technology 2003, 21 (7), 1307-1331.
[47]J.D. Mellor, “Fundamentals of Freeze Drying”, Academic Press: London, 1978.
[48]A.I. Liapis, R.J. Litchfield, “Optimal control of a freeze dryer I: Theoretical development and quasi steady state analysis”, Chemical Engineering Science 1979, 34, 975-981.
[49]R.J. Litchfield, A.I. Liapis, “Optimal control of a freeze dryer II: Dynamic analysis”, Chemical Engineering Science 1982, 37, 45-55.
[50]R.J. Litchfield, F.A. Farhadpour, A.I. Liapis, “Cyclical pressure freeze drying”, Chemical Engineering Science 1981, 36, 1233-1238.
[51]H. Sadiloglu, “Optimal Control of the Secondary Drying Stage of Freeze Drying of Solutions in Vials Using Variational Calculus”, Drying Technology, vol. 23, pp. 33-57, 2005.
[52]S.A. Goldblith, L. Rey, W.W. Rothmayr, “Freeze-Drying and Advanced Food Technology”, Academic Press: London, 1975.
[53]T.W. Rowe, J.W. Snowman, “Edwards Freeze-Drying”, Handbook: Crawley: Cambridge, 1978.
[54]J.C. King, “Freeze-Drying- of Foods”, CRC Press: Cleveland, Ohio, 1971.
[55]E. Wolff, H. Gilbert, “Vacuum freeze-drying kinetics and modeling of a liquid in a vial”, Chemical Engineering and Processing 1989, 25. 153-158.
[56]S. Laurent, F.Couture, M. Roques, “Vacuum drying of a multi-component pharmaceutical product having different pseudo-polymorphic forms”, Chemical Engineering and Processing 1999, 38, 157-165.
[57]H.E. Wolf, E.U. Schlunder, “Adsorption equilibrium of solvent mixtures on silica gel and silica gel coated ceramics”, Chemical Engineering and Processing 1999, 38, 211-218.
[58]C.C. Huang, J.R. Fair, “Study of the adsorption and desorption of multiple adsorbates in a fixed bed”, AlCHE Journal 1988, 34, 1861-1877.
[59]J.M. Schork, J.R. Fair, “Parametric analysis of thermal regeneration of adsorption beds”, Industrial & Engineering Chemistry Research 1988, 27, 457-459.
[60]H. Sadikoglu, A.I. Liapis, “Mathematical modeling of the primary and secondary drying stages of bulk solution freeze-drying in trays: Parameter estimation and model discrimination by comparison of theoretical results with experimental data”, Drying Technology 1997, 75, 791-810.
[61]A.I. Liapis, R. Bruttini, “Freeze-drying of pharmaceutical crystalline and amorphous solutes in vials: Dynamic multi-dimensional models of the primary and secondary drying stages and qualitative features of the moving interface”, Drying Technology 1995, 13, 43-72.
[62]F. Jaafar, S. Michatowski, “Modified BET equation for sorption/desorption isotherms”, Drying Technology 1990, 8, 811-827.
[63]J. Nastaj, “Fixed bed vacuum desorplion of a multicomponent moisture in the vacuum drying”, in Drying''96; Mujumdar, A.S., Ed.; Lodz Technical University: Krakow, Poland, 1996; 175-182.
[64]J. F. Nastaj, B. Ambrozek, “Modeling of vacuum desorption in freeze-drying process”, Drying Technology, vol. 23, pp.1693-1709, 2005.
[65]M. Kobayashi, K. Harashima, R. Sunama, A.R. Yao, “Inter-vial variance of the sublimation rate in shelf freezedryer”, Actes Congr. Int. Froid, 18th 4 (1991) 1711-1715.
[66]P. Sheehan, A.I. Liapis, “Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies”, Biotechnol. Bioeng. 60 (1998) 712-728.
[67]K.H. Gan, R. Bruttini, O.K. Crosser, A.I. Liapis, “Heating policies during the primary and secondary drying stages of the lyophilization process in vials: effects of the arrangement of vials in clusters of square and hexagonal arrays on trays”, Drying Technol. 22 (2004) 731-769.
[68]K.H. Gan, R. Bruttini, O.K. Crosser, A.I. Liapis, “The effects of tray side and drying chamber wall temperature on the performance of freeze-drying in vials arranged in clusters of square and hexagonal arrays on trays for different heat input control policies”, Paper V12 Presented at the Internal Meeting of the GVC-Technical Committee Drying Technology, jointly with the EFCE Working Party on Drying, Nuremberg, Germany, March 16-18, 2004.
[69]K.H. Gan, “The dependence of the overall drying time and product quality of a lyophilization process on the relative position of vials on a tray with tray sides and without tray sides for different heat input control policies”, Ph.D. thesis, University of Missouri-Rolla, Rolla, MO, 2004.
[70]K.H. Gan, R. Bruttini, O.K. Crosser, A.I. Liapis, “Freeze-drying of pharmaceuticals in vials on trays: effects of drying chamber wall temperature and tray side on lyophilization performance”, International Journal of Heat and Mass Transfer, vol. 48 1675-1687, 2005.
[71]S. Rambhatla, R.Ramot, C. Bhugra, M.J. Pikal, “Heat and mass transfer scale-up issues during freeze-drying: II. Controland characterization of the degree of supercooling”, AAPSPharm- SciTech. 5 (Article 58), 1–9, 2004.
[72]W. Y. Kuu, L. M. Hardwick, M. J. Akers, “Correlation of laboratory and production freeze drying cycles”, International Journal of Pharmaceutics vol. 302, pp. 56–67, 2005.
[73]A.I. Liapis, R.J. Litchfield, “Optimal control of a freeze dryer”, Chem. Eng. Sci. 1979, 34, 975–981.
[74]M.J. Millman, A.I. Liapis, J.M. Marchello, “An analysis of the lyophilization process using a sorption-sublimation model and various operation policies”, AIChE J 1985, 31, 1594–1604.
[75]W.J. Ferguson, R.W. Lewis, “A finite element analysis of freeze-drying of a coffee sample”, Comp. Meth. Appl. Mech. Eng. 1993, 108, 341–352.
[76]H. Sadikoglu, A.I. Liapis, O.K. Crosser, “Optimal control of the primary and secondary drying stages of bulk solution freeze-drying in trays”, Drying Technology 1998, 16, 399–431.
[77]Z.H. Wang, M.H. Shi, “Numerical study on sublimation-condensation phenomena during microwave freeze-drying”, Chem. Eng. Sci. 1998, 53, 3189–3197.
[78]P. Sheehan, A.I. Liapis, “Modeling of the primary and secondary drying stages of the freeze-drying of pharmaceutical products in vials: Numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operation policies”, Biotechnol. Bioeng. 1998, 60, 712–728.
[79]Z.H. Wang, M.H. Shi, “The effect of sublimation-condensation region on heat and mass transfer during microwave freeze-drying”, J. Heat Transfer 1998, 120, 654–660.
[80]W.J. Mascarenhas, H.U. Akay, M.J. Pikal, “A computational model for finite element analysis of the freeze-drying process”, Comp. Meth. Appl. Mech. Eng. 1998, 148, 105–124.
[81]C.S. Song, J.H. Nam, C. J. Kim, S.T. Ro, “A finite volume analysis of vacuum freeze-drying processes of skim milk solution in trays and vials”, Drying Technology 2002, 20, 283–305.
[82]H. Sadikoglu, M. Ozdemir, M. Seker, “Optimal control of the primary drying stage of freeze-drying of solutions in vials using variational calculus”, Drying Technology 2003, 21, 1307–1331.
[83]H. Wu, Z. Tao, G. Chen, H. Deng, G. Xu, S. Ding, “Conjugate heat and mass transfer process within porous media with dielectric cores in microwave freeze-drying”, Chem. Eng. Sci. 2004, 59, 2921–2928.
[84]J. H. Nam and C. S. Song, “An Efficient Calculation of Multidimensional Freeze-Drying Problems Using Fixed Grid Method”, Drying Technology, Vol. 23, pp. 2491–2511, 2005.
[85]張豐吉、陳心怡,“泡水紙質乾燥與修復”,2002/06。
[86]李志鵬,“冷凍真空乾燥(Lyophilization) 技術於製藥及生物科技產業之應用”,中華技術第56 期,2002/10。
[87]鄭鴻斌, 許佳琪, 王文博, 黃建翔, 張峻銓, 2005, “製藥/生技產業冷凍真空乾燥研究”, 冷凍空調技師, Vol. 1, No. 2, pp.25-34。
[88]徐成海等人,“真空乾燥”,化學工業出版社,2003。
[89]“談竹炭性質之檢測與分析”,林業研究專訊,第十卷第三期,2003,第38-45頁。
[90]許佳琪,冷凍真空乾燥系統技術研製,碩士論文,國立臺北科技大學冷凍空調工程系碩士班,台北,2005。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔