(3.236.6.6) 您好!臺灣時間:2021/04/22 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林振榮
研究生(外文):Chen-Jung Lin
論文名稱:奈米潤滑油對碳氫冷媒系統性能影響之研究
論文名稱(外文):A Study of the Effects of Nano Lubricant on the Performance of Hydrocarbon Refrigerant System
指導教授:卓清松
口試委員:張合徐昊杲陳希立
口試日期:2007-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:奈米粒子冷凍潤滑油冰箱碳氫冷媒溫室效應
外文關鍵詞:nanoparticlefreezer lubricantrefrigeratorhydrocarbon refrigerantglobal warming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今環保意識高漲的時代,設備節能已是熱門的議題。冰箱是家家戶戶具備的家電之一,長期運轉所累積的能量耗損不可忽視。目前所使用的R-134a冷媒屬於京都議定書所管制的溫室效應氣體,因此使用新型的環保冷媒是無法避免的趨勢,此外利用奈米技術提昇壓縮機運轉的潤滑性能也是節能的有效途徑。
本研究針對R-134a冷媒及聚酯類(POE)合成潤滑油的冰箱系統,以 R-600a/ R-290 混合比例各為50%之碳氫冷媒進行換裝,將POE合成潤滑油更換成礦物潤滑油,並在潤滑油中添加粒徑為20∼30 nm的Al2O3奈米粒子,添加濃度分別為0.05、0.1及0.2 wt.%。研究以改變負載大小及不同的奈米粒子添加量,最後將量測數據與R-134a / POE之冰箱進行相關性能比較與分析。
實驗結果顯示,在沒有改變任何元件的條件之下,容量50公升之冰箱以66 g的碳氫冷媒、礦物油與添加0.05~0.2wt.%的Al2O3奈米粒子之組合,取代其原有110g之R-134a 冷媒/ POE合成潤滑油時,其中以添加0.1wt.%的Al2O3奈米粒子的表現最為優異,耗電量平均消耗功率降低約2.4%,性能係數則提升4.4%,結果顯示,於潤滑油中加入低濃度的Al2O3奈米粒子,可節省其耗電量並減少對地球環境之衝擊。
Today there is a rise of environmental consciousness among people. The use of energy-saving equipments has become a very hot topic. Refrigerator is one of the home appliances that each family has. Its energy consumption accumulated for a long time should not be neglected. According to the Kyoto Protocol, the R-134a refrigerant commonly used by refrigerators belongs to a prohibited greenhouse gas. Therefore, it is inevitable to develop a new kind of refrigerant that meets the conditions of environmental protection. Besides, the use of nano technology to improve the lubricating function for the turning of compressor is also an effective means of energy saving.
The study replaces the synthetic lubricant with the combination of R-134a refrigerant and polyester (POE), which is originally applied to general refrigerators, by the hydrocarbon refrigerant composed of 50% of R-600a and 50% of R-290. The POE synthetic lubricant is also replaced by mineral lubricant. The Al2O3 nano particles at the diameter of 20∼30 nm are added to the lubricant. The weight concentration of the particles are 0.05, 0.1 and 0.2wt.% respectively. In the experiment, the loading size of freezer and the weight concentration of Al2O3 are changed. The measured data are compared with the data of the refrigerator originally using the R-134a / POE combination, to make a comparative analysis of different related functions.
The experimental results show that for a refrigerator at the capacity of 50 liters without the change of any component, when the 110g of synthetic lubricant composed of R-134a refrigerant / POE is replaced by the combination the 66g of hydrocarbon refrigerant / mineral oil / Al2O3 nanoparticles (0.05~0.2wt.%), the adding Al2O3 nanoparticles (0.1wt.%) in the refrigerator is more excellent than its original performance. The consumption power is reduced by about 2.4%, and the COP is increased 4.4%. As shown from the results, adding Al2O3 nano particle under lower concentration to lubricant can save the power consumption and decrease impacts to the environment of the earth.
摘要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法 3
1.4 論文架構 4
1.5 文獻回顧 5
第二章 相關理論分析 9
2.1 蒸氣壓縮冷凍循環系統之熱力分析 9
2.1.1 蒸氣壓縮冷凍循環之基本理論 9
2.1.2 理想蒸氣壓縮冷凍循環 9
2.1.3 實際蒸氣壓縮冷凍循環 10
2.1.4 冷媒之熱力性質分析 11
2.1.5 蒸氣壓縮冷凍循環系統之理論模式分析 13
2.2 冷凍系統中的潤滑油 15
2.2.1 冷凍潤滑油之重要性 15
2.2.2 冷凍潤滑油之分類與成份 16
2.2.2.1 礦物油 16
2.2.3 冷凍潤滑油之性質 18
2.2.4 冷凍潤滑油之溶解度 24
2.3 奈米流體 27
2.3.1 奈米流體的製備 27
2.3.2 奈米流體之熱傳增進機制 28
2.3.2.1 奈米流體熱傳導係數的估算 29
2.3.2.2 奈米流體的熱擴散係數估算 31
2.3.3 奈米流體的黏滯係數 32
第三章 實驗裝置設備與實驗方法 33
3.1 實驗設備介紹 33
3.1.1 實驗系統 33
3.1.2 量測系統 34
3.2 實驗架構 37
3.3 實驗方法與步驟 38
3.4 實驗的操縱變因 40
3.5 實驗數據量測與分析 40
3.5.1 實驗量測狀態點 41
3.5.2 碳氫冷媒性質資料庫的建立與應用 42
3.5.3 奈米冷凍油製備 42
3.5.4 實驗數據分析 43
第四章 結果與討論 45
4.1 冰箱冷凍庫無載最低庫溫試驗 45
4.2 冰箱冷凍庫加載運轉試驗 51
4.3 冰箱冷凍庫長時間運轉試驗 55
第五章 結論與建議 73
5.1 結論 73
5.2 建議 74
參考文獻 75
符號說明 79
[1]崔偉哲,奈米粉體潤滑之磨潤特性研究,碩士論文,國立台北科技大學車輛工程研究所,台北,2005。
[2]R.S.Agarwal et al.,”Evaluation of Hydrocarbon Refrigerants in single Evaporator Domestic Refrigerator-Freezers”.CFC and Halon Alternatives Conference, 1995,pp.248-257.
[3]B. H.Lim,H.W.Lee,B.K.Chong and J.Dongsoo,”Testing of a Hydrocarbon Mixture in Domestic Refrigerators”,ASHRAETransactions, Symposia, 1996,pp.1077~1084.
[4]G.D. Mathur,”Heat Transfer Coefficients for Propane (R-290)Isobutane (R-600a), and 50/50 Mixture of Propane and Isobutane”,ASHRAE Transactions, Symposia,1998, pp 1159-1172.
[5]M. A. Alsaad and M. A. Hammad,”The application of propane/butane mixture for domestic refrigerators”,Applied Thermal Engineering 18 1998, pp. 911-918.
[6]林振源、顏貽乙,HC冷媒特性與應用情形,中國冷凍空調雜誌,1998,第77-81頁。
[7]李昭仁,環保冷媒R-290 應用於冷藏、冷凍系統之性能研究,碩士論文,國立台灣大學機械工程研究所,台北,1998。
[8]李舜祺,環保冷媒異丁烷R-600a 應用於冷凍系統之研究,碩士論文,國立台灣大學機械工程研究所,台北,1998。
[9]B. Tashtoush , M. Tahat , M.A. Shudeifat ,”Experimental study of new refrigerant mixtures to replace R12 in domestic refrigerators“, Applied Thermal Engineering . 2001,pp.495-506.
[10]王偉儒,家用冰箱系統換裝碳氫冷媒之性能研究,碩士論文,國立台北科技大學冷凍空調研究所,台北,2005。
[11]S. U. S. Choi, D. A. Siginer and H. P. Wang, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, ASME, New York, FED-vol. 231/MD-vol.66, 1995, pp.99-105.
[12]J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, “Enhanced thermal conductivity through the development of nanofluid,” Nanophase and Nanocomposite Materials II.MRS, Pittsburg, PA, 1997, pp.3-11.
[13]X. Wang, X. Xu and S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” J. Therm. Phys. Heat Transfer, vol.13, 1999, pp.474-480.
[14]H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of 7-AI2O3, SiO2, and TiO2 ultra-fine particles),” Netsu Bus-sei (Japan), 7 (4), 1993, pp. 227–233.
[15]S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, 121, 1999, pp. 280–289.
[16]J.A. Eastman, S.U.S. Choi, S. Li,W. Yu, L.J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78 (6), 2001, pp. 718–720
[17]S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, “Anomalous thermal conductivity enhancement in nano-tube suspensions,” Applied Physics Letters, 79, 2001, pp. 2252–2254.
[18]H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, 91 (7), 2002, pp. 4568–4572.
[19]M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, J. Fischer, “Carbon nanotube composites for thermal management,” Applied Physics Letters, 80 (15), 2002, pp.2767–2769.
[20]M. Llaguno, J. Hone, A. Johnson, J. Fischer, “Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence,” in: H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.), AIP Conference Proceedings, vol. 591, Woodbury, New York, 2001.
[21]J. W. Huang, “The thermal property of nanofluid,” Master’s thesis, Graduate Institute of Power Mechanical Engineering, NTHU., 2004.
[22]洪忠仁,氧化銅奈米流體熱流性質分析與應用研究,碩士論文,國立台北科技大學冷凍空調研究所,台北,2005。
[23]郭育廷,三氧化二鋁奈米流體熱性質分析與實驗研究,碩士論文,國立台北科技大學冷凍空調研究所,台北,2006。
[24]賴耒聲,二氧化鈦奈米流體熱性質與應用研究,碩士論文,國立台北科技大學能源與冷凍空調研究所,台北,2007。
[25]N.P.Garland﹐M.Hadfield﹐“Environmental implications of hydrocarbon refrigerants applied to the hermetic compressor”﹐Materials and Design﹐ Vol. 26, 2005, pp. 578–586.
[26]顧彩香、顧卓明、陳志剛、王人冰,兩種纳米粒子組合物用作潤滑油添加劑,機械設計,第 22 卷第 12 期, 2005 年 12 月,第 34-36 頁。
[27]姜鵬、姚可夫,碳纳米管作為潤滑油添加劑的摩擦磨損性能研究,摩擦學學報,第 25 卷第 5 期, 2005 年 9 月,第 394-397 頁。
[28]B. A. Younglove and J. F. Ely,”Thermophysical properties of fluids. Methane ethane propane isobutane and normal butane Ⅱ”Jol. Phy.,Chem. Refer., Data,Vol 16,1987, pp. 577-598.
[29]Lubricant in Refrigerant Systems, ASHRAE Handbook Refrigeration , Chapter 7 , 2006, pp.2-7
[30]Short﹐G.D. 1990. Synthetic lubricants and their refrigeration applications. Lubrication Engineering 46 ( 4 ) : 239
[31]Shubkin﹐R.L. 1993. Polyalphaolefins. In synthetic lubricants and high performance functional fluids. Marcel Dekke﹐New York.
[32]Clark﹐F.M. 1940. Water solution in high-votage dielectric liquids. Electrical Engineering Transactions 59( 8 ) : 433 .
[33]Y. Xuan, Q. Li, "Heat transfer enhancement of nanofluids," International Journal of Heat and Fluid Flow, vol. 21,,no. 1, 2000, pp. 58-64.
[34]張立德、牟季美著,納米材料和納米結構,北京,科學出版社,2001,第114頁。
[35]王啟川,線上冷凍空調雜誌,奈米科技與冷凍空調-兩個未來可能的應用例,http://www.hvacr.com.tw/mag/tech/rah54/r5401.cfm
[36]S. K. Das, N. Putra, P. Thiesen, W. Roetzel, "Temperature dependence of thermal conductivity enhancement for nanofluids," Journal of Heat Transfer, vol. 125, no. 4, 2003, pp. 567-574.
[37]S. M. S. Murshed, K. C. Leong , C. Yang, "Enhanced thermal conductivity of TiO2-water based nanofluids," International Journal of Thermal Sciences, vol. 44, no. 4, 2005, pp. 367-373.
[38]P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, "Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids)," International Journal of Heat Mass Transfer, Vol. 45, 2002, pp. 855-863.
[39]C. Maxwell, "A Treatise on Electricity and Magnetism," 2nd ed. (Oxford University Press, Cambridge), 1904, pp. 435-441.
[40] R. L. Hamilton, O. K. Crosser, "Thermal conductivity of heterogeneous two-component systems," Industrial and Engineering Chemistry Fundamentals, vol. 1, no. 3, 1962, pp. 187-191.
[41]W. Yu, S. U. S Choi, "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model," Journal of Nanoparticle Research, Vol. 5, no. 1-2, 2003, pp. 167-171.
[42]S. P. Jang, S. U. S Choi , "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Applied Physics Letters, Vol. 84, no. 21, 2004, pp.4316–4318.
[43]P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, "Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids)," International Journal of Heat Mass Transfer, Vol. 45, 2002, pp. 855-863.
[44]Y. Ren, H. Xie, A. Cai, "Effective thermal conductivity of nanofluids containing spherical nanoparticles," Journal of Physics D: Applied Physics, Vol. 38, no. 21, 2005, pp. 3958-3961.
[45]C. S. Jwo, T. P Teng, H. Chang, "A simple model to estimate thermal conductivity of fluid with acicular nanoparticles," Journal of alloys and Compounds, vol. 434-435, 2007, pp. 569-571.
[46]Xuan Y, Li Q., "Investigation on convective heat transfer and flow features of nanofluids," Journal of Heat Transfer, Vol.125, no. 1, 2003, pp. 151-155.
[47]H.C. Brinkman, "The viscosity of concentrated suspensions and solution," J. Chem. Phys, Vol.20 , 1952, pp. 571-581.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔