跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奕慶
研究生(外文):Yi-Ching Wu
論文名稱:奈米白金修飾導電鑽石電極電化學偵測砷(III)
論文名稱(外文):Determination of arsenic(III) with platinum nanoparticle modified boron doped diamond electrode
指導教授:林孟山
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:奈米白金導電鑽石電化學
外文關鍵詞:arsenicboron doped diamond electrodeplatinum nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的是利用微波電漿氣相化學沉積法之技術自製導電鑽石薄膜電極,探討導電鑽石薄膜電極製程參數對電化學行為的影響,並且用電化學方法將奈米白金顆粒修飾導上電鑽石薄膜電極來偵測環境毒物-砷(III)。由於導電鑽石薄膜電極在電分析化學上比傳統電極有更多的優點包括耐久性、電導性、優良的化學惰性、較低的背景電流、較廣的偵測電位、抗熱、抗酸...等特性。所以發展導電鑽石薄膜電極來當做工作電極。
導電鑽石薄膜電極製備在1500W微波功率、55torr氣體總壓、氫氣流速300sccm、甲烷流速50sccm、B(OCH3)3流速5sccm下,並施加-125V直流偏壓成核20分鐘、成長180分鐘即完成電極製備,此導電鑽石薄膜電極對1mM K3Fe(CN)6在循環伏安法的反應其標準偏差值為3.13% (n=8)。
電化學實驗選擇奈米白金修飾導電鑽石電極以計時安培法(Chronoamperomtric)進行環境毒物-砷(III)的偵測,利用循環伏安法在1.2∼-0.2V電位區間以50 mV/sec的掃描條件下連續掃描20分鐘以修飾上奈米白金顆粒,偵測環境為0.1M pH4 醋酸緩衝溶液,偵測電位為0.8V (vs. Ag/AgCl),前處理電位0.2V (vs. Ag/AgCl),前處理時間15秒,偵測取樣時間為5秒。線性範圍0.1∼100 (R=0.998),靈敏度為273.25μA/mM,本系統的偵測極限(S/N=3)為16.7 nM,重複操作的相對標準偏差為1.013%(n=20)。
Conductive boron-doped diamond (BDD) electrode has attracted intensive attention recently. This prominent new material possess characteristics like its high electronic conductivity, excellent chemical inertness, a wide potential window, small residual current, as well as physical and chemical stability. This home-made BDD electrode, prepared by utilizing microwave plasma enhanced chemical vapor deposition (MPECVD) making electrode, is widely used for the detection environmental and biological samples.
A new scheme to measure Arsenic(III) with platinum nanoparticle modified boron doped diamond electrode was proposed by using chronoamperometry at the optimum conditions at buffer solution : 0.1M, pH4 acetate buffer; initial potential: 200mV(vs. Ag/AgCl) applied 20 seconds;detection potential: 800 mV(vs. Ag/AgCl); sampling time: 5sec. The sampling time in chronoamperometry was sampling at the 5th second after the potential step. According to optimum operation conditions, the linear range of Arsenic(III) is obtained between 10 to 100 μM (R=0.998), and its sensitivity is 273.25 μA/mM with estimated detection limited about 16.7 nM (S/N=3). The relative standard deviation of twenty repetitive detections is 1.013%.
1-1 硼摻雜奈米鑽石電極薄膜在電化學分析上的應用………………1
1-1-1 簡介……………………………………………………………1
1-1-2 鑽石電極薄膜的特性…………………………………………2
1-1-3 鑽石薄膜及導電鑽石薄膜之合成及成長理論………………3
1-1-4 導電鑽石電極薄膜在電化學分析上的應用…………………5
(1) 流動注射系統結合電化學偵測(FIA-EC)…………………5
(2) 液相層析結合電化學偵測(HPLC-EC)……………………7
(3) 毛細管電泳結合電化學偵測(CE-EC)及毛細管電泳晶片結合電化學偵測(CE-Chip-EC)…………………………………………9
(4) 安培法(Amperometric)……………………………………10
(5) 電位法(Potentiometric)…………………………………13
(6) 其他電化學應用……………………………………………14
1-1-5 鑽石微電極……………………………………………………17
1-2砷……………………………………………………………………19
1-2-1 簡介……………………………………………………………19
1-2-2 砷在自然界中的分佈及其物種………………………………20
1-2-3 砷的毒理效應…………………………………………………21
1-2-4 砷、腐質酸與烏腳病…………………………………………23
1-2-5砷物種分析方法
(1)光譜法……………………………………………………………25
(2)高效能液相層析法………………………………………………25
(3)毛細管電泳法……………………………………………………26
(4)中子活化法………………………………………………………27
(5)電化學分析法……………………………………………………27
1-3化學修飾電極………………………………………………………28
1-3-1化學吸附法………………………………………………………29
1-3-2共價鍵結法………………………………………………………31
1-3-3高分子薄膜塗佈法………………………………………………33
1-3-4非均相材料混合塗佈法…………………………………………36
1-4修飾電極常見之特性及功能………………………………………39
1-4-1 電催化…………………………………………………………39
1-4-2 預濃縮…………………………………………………………40
1-4-3薄膜阻隔………………………………………………………42
1-4-4電釋放…………………………………………………………43
1-5本研究的目的………………………………………………………45

第二章 實驗部分

2-1 part I:硼摻雜鑽石薄膜電極製備條件與程序之探討
2-1-1 儀器…………………………………………………………46
2-1-2 藥品…………………………………………………………47
2-1-3 鍍膜步驟……………………………………………………47
2-1-4 硼摻雜鑽石電極製作條件之設計…………………………49
(1) 摻雜源B(OCH3)3流速之探討…………………………49
(2) 氣體CH4流速之探討……………………………………49
(3) 直流偏壓之探討………………………………………49
(4) 成長時間之探討………………………………………50
2-2 partII:奈米白金修飾硼摻雜鑽石薄膜電極電化學偵測砷(III)
2-2-1 儀器…………………………………………………………50
2-2-2 藥品…………………………………………………………50
2-2-3白金修飾硼摻雜鑽石薄膜電極之製備……………………51
2-2-4實驗條件之設計……………………………………………51
2-2-4-1 反應機構之探討……………………………………51
2-2-4-2 溶液酸鹼值之探討…………………………………51
2-2-4-3 偵測電位之探討……………………………………51
2-2-4-4 前處理電位之探討…………………………………51
2-2-4-5 前處理時間之探討…………………………………52
2-2-4-6 緩衝溶液種類之探討………………………………52
2-2-4-7 緩衝溶液濃度之探討………………………………52
2-2-4-8 分析特性之探討……………………………………52
第三章 結果與討論

3-1-1 硼摻雜導電鑽石電極製程參數之探討……………………53
(1) 摻雜源B(OCH3)3流速之探討………………………53
(2) 氣體CH4流速之探討………………………………54
(3) 直流偏壓之探討……………………………………54
(4) 成長時間之探討……………………………………55
(5) 製程穩定性之探討…………………………………55
3-1-2 導電鑽石薄膜電極之分析……………………………………62
3-2-1 偵測機制及CV的探討…………………………………………64
3-2-2 奈米白金修飾導電鑽石薄膜電極製備法之探討……………65
3-2-3 分析最佳化的之探討…………………………………………71
(1) 溶液酸鹼值之探討…………………………………71
(2) 偵測電位之探討……………………………………71
(3) 前處理電位之探討…………………………………75
(4) 前處理時間之探討…………………………………75
(5) 緩衝溶液種類之探討………………………………78
(6) 緩衝溶液濃度之探討………………………………78
3-2-4 分析特性之探討…………………………………………81
3-3 結論………………………………………………………84

圖表目錄

圖(一) 硼流速之探討…………………………………………………56
圖(二) 甲烷流速之探討………………………………………………57
圖(三) 直流偏壓之探討………………………………………………58
圖(四) 導電鑽石薄膜電極之SEM圖…………………………………59
圖(五) 成長時間之探討………………………………………………60
圖(六) 導電鑽石薄膜鍍膜製程之相對標準偏差值…………………61
圖(七) 導電鑽石薄膜電極之拉曼光譜圖……………………………63
圖(八)循環伏安法圖譜500 μM As(III) 在0.1M硫酸溶液(a)空白導電鑽石薄膜電極 (b) 奈米白金修飾導電鑽石薄膜電極……………66
圖(九) 循環伏安法圖譜500 μM As(III)在0.1M硫酸溶液中,導電鑽石薄膜電極修飾白金顆粒在不同掃描範圍…………………………67
圖(十) 比較不同沉積時間奈米白金修飾導電鑽石電極之S/B值…68
圖(十一)比較奈米白金修飾導電鑽石電極及傳統白金電極之S/B值69
圖(十二) 奈米白金修飾導電鑽石薄膜電極之SEM圖………………70
圖(十三) 循環伏安法量測下,pH對氧化峰電位之探討……………72
圖(十四) 溶液之酸鹼值的探討………………………………………73
圖(十五) 偵測電位之探討……………………………………………74
圖(十六) 前處理電位之探討…………………………………………76
圖(十七) 前處理時間之探討…………………………………………77
圖(十八) 緩衝溶夜種類之探討………………………………………79
圖(十九) 緩衝溶夜濃度之探討………………………………………80
圖(二十) 本系統對於砷(III)分析的校正曲線……………………82
圖(二十一) 偵測砷(III)系統之穩定性……………………………83


表(一) 導電鑽石薄膜電極製作最佳化條件…………………………62
表(二) 實驗操作的最佳化條件………………………………………81
表(三) 砷(III)偵測系統之分析特性………………………………86
表(四) 砷(III)偵測方法比較………………………………………87
1. Y. Sumikawa, T. Banno, K. Kobayashi, Y. Itoh, H. Umezawa, H. Kawarada, Memory effect of diamond in-plane-gated field-effect transistors, Appl. Phys. Lett. 85 (2004) 139-141.
2. P.C. Ricci, A. Anedda, C.M. Carbonaro, F. Clemente, R. Corpino, Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectroscopy study, Thin Solid Films 482 (2005) 311-317.
3. P. W. Bridgman, Scient Am. 193 (1955) 42.
4. W. G. Eversole, U.S. Patent No.3 1962, 030, 188
5. A. M. Bonnot, Overview of the characterization methods of the growth mechanisms of low pressure diamond, Surf. Coat. Tech. 45 (1991) 343-352.
6. G. M. Swain, J. Xu, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes, Anal. Chem. 65 (1993) 345-351.
7. S. Jolley, M. Koppang, T. Jackson, G. M. Swain, Flow Injection Analysis with Diamond Thin-Film Detectors, Anal. Chem. 69 (1997) 4099-4107.
8. X. Jishou, G. M. Swain, Oxidation of Azide Anion at Boron-Doped Diamond Thin-Film Electrodes, Anal. Chem. 70 (1998) 1502-1510.
9. B. V. Sarada, T. N. Rao, D. A. Tryk, A. Fujishima, Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes, Anal. Chem. 72 (2000) 1632-1638.
10. S. T. Nicolae, B. V. Sarada, P. Elena, A. T. Donald, A. Fujishima, Voltammetric Determination of L-Cysteine at Conductive Diamond Electrodes, Anal. Chem. 73 (2001) 514-519.
11. T. R. Ralph, M. L. Hitchman, J. P. Millington, F. C. Walsh, The electrochemistry of -cystine and -cysteine : Part 1: Thermodynamic and kinetic studies, J. Electroanal. Chem. 375 (1994) 1-15.
12. M. A. Witek, G. M. Swain, Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis, Anal. Chim. Acta 440 (2001) 119-129.
13. K. Ohnishi, Y. Einaga, H. Notsu, C. Terashima, T. N. Rao, S. G. Park, A. Fujishima, Electrochemical Glucose Detection Using Nickel-Implanted Boron-Doped Diamond Electrodes, Electrochem. Solid-State Lett. 5 (2002) D1-D3.
14. N. Wangfuengkanagul, O. Chailapakul, Electrochemical analysis of D-penicillamine using a boron-doped diamond thin film electrode applied to flow injection system, Talanta 58 (2002) 1213-1219.
15. Y. Zhang, S. Asahina, M. Suzuki, S. Yoshihara, T. Shirakashi, Electrochemical behavior of 3,6-dihydroxyphenanthrene on boron-doped diamonds, Surf. Coat. Tech. 169 (2003) 303-306.
16. W. Siangproh, N. Wangfuengkanagul, O. Chailapakul, Electrochemical oxidation of tiopronin at diamond film electrodes and its determination by amperometric flow injection analysis, Anal. Chim. Acta 499 (2003) 183-189.
17. W. Siangproh, P. Ngamukot, O. Chailapakul, Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system, Sensors. Actuat. B-Chem. 91 (2003) 60-66.
18. T. N. Rao, B.V. Sarada, D.A. Tryk, A. Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, J. Electroanal. Chem. 491 (2000) 175-181.
19. A. Fujishima, T. N. Rao, New directions in structuring and electrochemical applications of boron-doped diamond thin films, Diam. Relat. Mater. 10 (2001) 1799-1803.
20. T.A. Ivandini, B.V. Sarada, C. Terashima, T.N. Rao, D.A. Tryk, H. Ishiguro, Y. Kubota, A. Fujishima, Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes, J. Electroanal. Chem. 521 (2002) 117-126.
21. C. Terashima, T. N. Rao, B. V. Sarada, D. A. Tryk, A. Fujishima, Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection, Anal. Chem. 74 (2002) 895-902.
22. T. N. Rao, B. H. Loo, B. V. Sarada, C. Terashima, A. Fujishima, Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes, Anal. Chem. 74 (2002) 1578-1583.
23. O. Chailapakul, W. Siangproh, B. V. Sarada, C. Terashima, T. N. Rao, D. A. Tryk, A. Fujishima, The electrochemical oxidation of homocysteine at boron-doped diamond electrodes with application to HPLC amperometric detection, Analyst 127 (2002) 1164-1168.
24. C. Terashima, T. N. Rao, B. V. Sarada, Y. Kubota, A. Fujishima, Direct Electrochemical Oxidation of Disulfides at Anodically Pretreated Boron-Doped Diamond Electrodes, Anal. Chem. 75 (2003) 1564-1572.
25. T.A. Ivandini, B.V. Sarada, C. Terashima, T.N. Rao, A. Tryk, H. Ishiguro, Y. Kubota, A. Fujishima, Gradient liquid chromatography of leucine-enkephalin peptide and its metabolites with electrochemical detection using highly boron-doped diamond electrode, J. Chromatogr. B 791 (2003) 63-72.
26. G. W. Muna, N. Tasheva, G. M. Swain, Electro-oxidation and Amperometric Detection of Chlorinated Phenols at Boron-Doped Diamond Electrodes: A Comparison of Microcrystalline and Nanocrystalline Thin Films, Environ. Sci. Technol. 38 (2004) 3674-3682.
27. J. Wang, G. Chen, P. C. Madhu, A. Fujishima, A. T. Donald, S. Dongchan, Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector, Anal. Chem. 75 (2003) 935-939.
28. S. Dongchan, B. V. Sarada, D. A. Tryk, A. Fujishima, J. Wang, Application of Diamond Microelectrodes for End-Column Electrochemical Detection in Capillary Electrophoresis, Anal. Chem. 75 (2003) 530-534.
29. C. k. Josef, Q. Veronika, J. w. Park, S. Yoshiyuki, M. Alexander, G. M. Swain, Boron-Doped Diamond Microelectrodes for Use in Capillary Electrophoresis with Electrochemical Detection, Anal. Chem. 75 (2003) 2678-2687.
30. S. Dongchan, D. A. Tryk, A. Fujishima1, M. Alexander, G. Chen, J. Wang, Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines, Electrophoresis 25 (2004) 3017-3023.
31. J. Wang, J. Chen, M. Alexander, S. Dongchan, A. Fujishima, Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines, J. Chromatogr. A 1022 (2004) 207-212.
32. X. Ji, C. E. Banks, R. G. Compton, The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions, Analyst 130 (2005) 1345–1347.
33. G. W. Muna, V. Quaiserova’Mocko, G. M. Swain, Chlorinated Phenol Analysis Using Off-Line Solid-Phase Extraction and Capillary Electrophoresis Coupled with Amperometric Detection and a Boron-Doped Diamond Microelectrode, Anal. Chem. 77 (2005) 6542-6548.
34. A. Salimi, V. Alizadeh, R. Hallaj, Amperometric detection of ultra trace amounts of Hg(I) at the surface boron doped diamond electrode modified with iridium oxide, Talanta 68 (2006) 1610-1616.
35. C. Terashima, T. N. Rao, B. V. Sarada, N. Spataru, A. Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications, J. Electroanal. Chem. 544 (2003) 65-74.
36. J. Wu, H. Wang, L. Fu, Z. Chen, J. Jiang, G.Shen, R. Yu, Detection of catechin based on its electrochemical autoxidation, Talanta 65 (2005) 511-517.
37. R. Uchikado, T. N. Rao, D.A. Tryk, A. Fujishima, Metal-Modified Diamond Electrode as an Electrochemical Detector for Glucose, Chem. Lett. 30 (2001) 144-145.
38. L. Su, X. Qiu, L. Guo, F. Zhang, T. Chenhe, Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method,Sensors. Actuat. B-Chem. 99 (2004) 499-504.
39. H. Olivia, B.V. Sarada, H. Fujishima, Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes, Electrochim. Acta. 49 (2004) 2069-2076.
40. T. Ponnuswamy, J. J. Chen, F. Xu, O. Chyan, Monitoring metal ion contamination onset in hydrofluoric acid using silicon–diamond and dual silicon sensing electrode assembly, Analyst 126 (2001) 877-880.
41. A. F. C. Shokoofeh, W. Jerry, G. M. Swain, R. Rajeshuni, Cyclic Voltammetric Studies of Charge Transfer Reactions at Highly Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem. 67 (1995) 2812-2821.
42. R. Ramesham, Cyclic voltammetric response of boron-doped homoepitaxially grown single crystal and polycrystalline CVD diamond,Sensor. Actuat. B-Chem 50 (1998) 131-139.
43. A. Fujishima, T. N. Rao, E. Popa, B. V.Sarada, I. J. Yagi, Electroanalysis of dopamine and NADH at conductive diamond electrodes,J. Electroanal. Chem. 473 (1999) 179-185.
44. M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem. 72 (2000) 3793-3804.
45. T. Tatsuma, H. Mori, A. Fujishima, Electron Transfer from Diamond Electrodes to Heme Peptide and Peroxidase, Anal. Chem. 72 (2000) 2919-2924
46. O. Chailapakul, E. Popa, H. Tai, B. V. Sarada, D. A. Tryk, A.Fujishima, The electrooxidation of organic acids at boron-doped diamond electrodes, Electrochem. Commun. 2 (2000) 422-426.
47. A. Fujishima, T. N. Rao, Recent advances in electrochemistry of diamond, Recent advances in electrochemistry of diamond,Diamond Relat. Mater. 9 (2000) 384-389.
48. J. Wang, G. M.Swain, T. Tachibana, K. Kobashi, Incorporation of Pt Particles in Boron-Doped Diamond Thin Films Applications in Electrocatalysis, J. Electrochem. Soc. 3 (2000) 286-289.
49. J. K. Zak, J. E. Butler, G. M. Swain, Diamond Optically Transparent Electrodes: Demonstration of Concept with Ferri/Ferrocyanide and Methyl Viologen, Anal. Chem. 73 (2001) 908-914.
50. O. Chailapakul, P. Aksharanandana, T. Frelink, Y. Einaga, A. Fujishama, The electrooxidation of sulfur-containing compounds at boron-doped diamond electrode,Sens. actuators. B 80 (2001) 193-201.
51. A. D. Battisti, S. J. Ferro, Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond, J. Phys. Chem. B 106 (2002) 2249-2254.
52. I. Yagi, K. Tsunozaki, A. Fujishima, B. Ohtani, K. J. Uosaki, The Effects of Nitrogen and Plasma Power on Electrochemical Properties of Boron-Doped Diamond Electrodes Grown by MPCVD, J. Electrochem. Soc. 149 (2001) E1-E5.
53. Y. Zhang, S. Asahina, S. Yoshihara, T. J. Shirakashi, Fabrication and Characterization of Diamond Quartz Crystal Microbalance Electrode, J. Electrochem. Soc. 149 (2002) H179-H182.
54. K. J. McKenzie, F. Marken, Electrochemical Characterization of Hydrous Ruthenium Oxide Nanoparticle Decorated Boron-Doped Diamond Electrodes,Electrochem. Solid-State Lett. 5 (2002) E47-E50.
55. C. Levy-Clement, N. A. Ndao, A. Katty, M. Bernard, A. Deneuville, C. Comninellis, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater, Diam. Relat. Mater. 12 (2003) 606-612.
56. S. Haymond, J. K. Zak, Y. Show, J. E. Butler, G. Bakcock, G. M. Swain, Spectroelectrochemical responsiveness of a freestanding, boron-doped diamond, optically transparent electrode toward ferrocene, Anal. Chim. Acta 500 (2003) 137-144.
57. N. Spatru, K. Tokuhiro, C. Terashima, T. N. Rao, A. Fujishima, Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond, J. Appl. Electrochem. 33 (2003) 1205-1210.
58. N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D. A. Tryk, S. M. Park, A. Fujishima, Electrochemical Behavior of Cobalt Oxide Films Deposited at Conductive Diamond Electrode J. Electrochem. Soc. 150 (2003) E337-E341.
59. H. Gu, X. Su, K. P. Loh, Conductive polymer-modified boron-doped diamond for DNA hybridization analysis, Chem. Phys. Lett. 388 (2004) 483-487.
60. M. Mitadera, N. Spataru, A. Fujishima, Electrochemical oxidation of aniline at boron-doped diamond electrodes, J. Appl. Electrochem. 34 (2004) 249-254.
61. Z. C. Dong, A. S. Trifonov, N. V. Suetin, P. V. Minakov, Electroluminescence of diamond films induced by a scanning tunneling microscope, Surf. Sci. 549 (2004) 203-210.
62. F. Okino, H. Shibata, S. Kawasaki, H. Touhara, K. Momota, M. Nishitani-Gamo, I. Sakaguchi, T. Ando,Electrochemical Fluorination of 1,4-Difluorobenzene Using Boron-Doped Diamond Thin-Film Electrodes, Electrochem. Solid-State Lett. 2 (1999) 382-384.
63. Y. Maeda, K. Sato, R. Ramaraj, T. N. Rao, D. A. Tryk, A. Fujishima, The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution, Electrochim. Acta. 44 (1999) 3441-3449.
64. A. J. Saterlay, F. Marken, J. S. Foord, R. G. Compton, Sonoelectrochemical investigation of silver analysis at a highly boron-doped diamond electrode, Talanta 53 (2000) 403-415.
65. P. L. Hagans, P. M. Natishan, B. R. Stoner, W. E. J. O’Grady, lectrochemical Oxidation of Phenol Using Boron-Doped Diamond Electrodes, J. Electrochem. Soc. 148 (2001) E298-E301.
66. Z. Yanrong, Y. J. Sachio, Cathodic stripping voltammetry of nickel on boron-doped diamond, J. Electroanal. Chem. 573 (2003) 327-331.
67. E. B. Craig, E. H. Michael, T. Peter, J. Robert, G. C. Richard, Cadmium detection via boron-doped diamond electrodes: surfactant inhibited stripping voltammetry, Talanta 62 (2004) 279-286.
68. A. Manivannan, R. Kawasaki, D. A. Tryk, A. Fujishima, Interaction of Pb and Cd during anodic stripping voltammetric analysis at boron-doped diamond electrodes, Electrochim. Acta 49 (2004) 3313-3318.
69. A. Manivannan, M. S. Seehra, A. Fujishima, Fuel Process. Technol. 85 (2004) 513-519.
70. A. Manivannan, L. Ramakrishnan, M. S. Seehra, E. Granite, J. E. Butler, D.A. Tryk, A. Fujishima, Mercury detection at boron doped diamond electrodes using a rotating disk technique, J. Electroanal. Chem. 577 (2005) 287-293.
71. A. Fujishima, D. Shin, B. V. Sarada, D. A. Tryk, Application of Diamond Microelectrodes for End-Column Electrochemical Detection in Capillary Electrophoresis, Anal. Chem. 75 (2003) 530-534.
72. J. B. Cooper, S. Pang, S. Albin, J. Zheng, R. M. Johnson, Fabrication of Boron-Doped CVD Diamond Microelectrodes, Anal. Chem. 70 (1998) 464-467.
73. B. V. Sarada, T. N. Rao, D. A. Tryk, A. Fujishima, Electrochemical Characterization of Highly Boron-Doped Diamond Microelectrodes in Aqueous Electrolyte, J. Electrochem. Soc. 146 (1999) 1469-1471.
74. K. T. Kitchin, Recent Advances in Arsenic Carcinogenesis: Modes of Action, Animal Model Systems, and Methylated Arsenic Metabolites, Toxicol. appl. pharmacol. 172 (2001) 249-261.
75. A. Ando, M. Suzuki, K. Fuwa, B. L. vallee, Atomic absorption of arsenic in nitrogen (entrained air)-hydrogen flames, Anal. Chem. 41 (1969) 1974-1979
76. M. H. Arbab-Zavar, A. G. Howard, Automated procedure for the determination of soluble arsenic using hydride generation atomic-absorption spectroscopy, Analyst 105 (1980) 744 – 750.
77. X. Li, J. Jia,Z. Wang, Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry, Anal. Chim. Acta 560 (2006) 153–158.
78. K. Jitmanee, M. Oshima, S. Motomizu, Speciation of arsenic(III) and arsenic(V) by inductively coupled plasma-atomic emission spectrometry coupled with preconcentration system, Talanta 66 (2005) 529–533.
79. L.O. Leal, R. Forteza, V. Cerda, Speciation analysis of inorganic arsenic by a multisyringe flow injection system with hydride generation–atomic fluorescence spectrometric detection, Talanta 69 (2006) 500–508.
80. C. T. Tye, S. J. Haswell, P. O''Neill, K. C. C. Bancroft, High-performance liquid chromatography with hydride generation/atomic absorption spectrometry for the determination of arsenic species with application to some water samples, Anal. Chim. Acta 169 (1985) 195-200.
81. E. H. Larsen, G. Pritzl, S. H. Hansen, Arsenic speciation in seafood samples with emphasis on minor constituents: an investigation using high-performance liquid chromatography with detection by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom 8 (1993) 1075-1084.
82. D. Schlegel, J. Mattusch, R. Wennrich, Speciation analysis of arsenic and selenium compounds by capillary electrophoresis, Fresenius'' J. Anal. Chem. 354 (1996) 535-539.
83. L. Lin, J. Wang, J. Caruso, Arsenic speciation using capillary zone electrophoresis with indirect ultraviolet detection, J. Chromatogr. Sci. 33 (1995) 177-180.
84. J. M. Rottschafer, R. J. Boczkowski, H. B. Mark, Preconcentration techniques for trace analysis via neutron activation, Talanta 19 (1972) 163-172.
85. Y.C. Sun, J.Y. Yang, Simultaneous determination of arsenic(III,V), selenium(IV,VI), and antimony(III,V) in natural water by coprecipitation and neutron activation analysis, Anal. Chim. Acta 395 (1999) 293-300.
86. D. J. Myers, J. Osteryoung, Determination of Arsenic( III) at the Parts-per-Billion Level by Differential Pulse Polarography, Anal. Chem. 45 (1973) 267-271.
87. R. S. Sadana, Determination of Arsenic in the Presence of Copper by Differential Pulse Cathodic Stripping Voltammetry at a Hanging Mercury Drop Electrode, Anal. Chem. 55 (1983) 304-307.
88. T. D. Cabelka, D. S. Austin, D. C. Johnson, Electrocatalytic Oxidation of As(III), J. Eelectrochem. Soc. 131 (1984) 1595-1601.
89. H. Li, R. B. Smart, Determination of sub-nanomolar concentration of arsenic(III) in natural waters by square wave cathodic stripping voltammetry, Anal. Chim. Acta 325 (1996) 25-32.
90. S.B. Adelojua, T.M. Younga, D. Jagnerb, G.E. Batley, Constant current cathodic stripping potentiometric determination of arsenic on a mercury Rlm electrode in the presence of copper ions, Anal. Chim. Acta 381 (1999) 207-213.
91. A. O. Simm, C. E. Bank, R. G. Compton, The Electrochemical Detection of Arsenic(III) at a Silver Electrode, Electroanalysis 17 (2005) 1727-1733.
92. A. O. Simm, C. E. Banks, R. G. Compton, Sonoelectroanalytical Detection of Ultra-Trace Arsenic, Electroanalysis 17 (2005) 335-342.
93. Y. Xiao, H.-X. Ju, H.-Y. Chen, Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine-Modified Gold Electrode, Anal. Biochem. 278 (2000) 22-28.
94. C. N. Sayre and D. M. Collard, Electrooxidative Deposition of Polypyrrole and Polyaniline on Self-Assembled Monolayer Modified Electrodes, Langmuir, 13 (1997) 714-722.
95. H. C. Yoon, M.-Y. Hong, H.-S. Kim, Affinity Biosensor for Avidin Using a Double Functionalized Dendrimer Monolayer on a Gold Electrode, Anal. Biochem. 282 (2000) 121-128.
96. X. Su, F. T. Chew, S. F. Y. Li, Self-Assembled Monolayer-Based Piezoelectric Crystal Immunosensor for the Quantification of Total Human Immunoglobulin E, Anal. Biochem. 273 (1999) 66-72.
97. S. O. Kelley, K. Barton, N. M. Jackson, M. G. Hill, Electrochemistry of Methylene Blue Bound to a DNA-Modified Electrode, Bioconjugate Chem. 8 (1997) 31-37.
98. A. Mulchandani, S. Pan, Ferrocene-Conjugatedm-Phenylenediamine Conducting Polymer-Incorporated Peroxidase Biosensors, Anal. Biochem. 267 (1999) 141-147.
99. J.-J. Xu, H.-Y. Chen, Amperometric Glucose Sensor Based on Coimmobilization of Glucose Oxidase and Poly(p-phenylenediamine) at a Platinum Microdisk Electrode, Anal. Biochem. 280 (2000) 221-226.
100. Q. Wu, G. D. Storrier, K. R. Wu, J. P. Shapleigh, H. D. Abruna, Electrocatalytic Reduction of S-Nitrosoglutathione at Electrodes Modified with an Electropolymerized Film of a Pyrrole-Derived Viologen System and Their Application to Cellular S-Nitrosoglutathione Determinations, Anal. Biochem. 263 (1998) 102-112.
101. Y. Ge, D. K. Smith, Development of Chemical Sensors Based on Redox-Dependent Receptors. Preparation and Characterization of Phenanthrenequinone-Modified Electrodes, Anal. Chem. 72 (2000) 1860-1865.
102. S. M. Hendrickson, M. Krejcik, C. M. Elliott, Poly(N-methylpyrrole)-Modified Electrodes. Amperometric Response to Trace Chlorocarbons in Aqueous Solution, Anal. Chem. 69 (1997) 718-723.
103. A. C. Ontko, P. M. Armistead, S. R. Kircus, H. H. Thorp, Electrochemical Detection of Single-Stranded DNA Using Polymer-Modified Electrodes, Inorg. Chem. 38 (1999) 1842-46.
104. J.-M. Zen, S.-H. Jeng, H.-J. Chen, Determination of Paraquat by Square-Wave Voltammetry at a Perfluorosulfonated Ionomer/Clay-Modified Electrode, Anal. Chem. 68 (1996) 498-502.
105. J.-M. Zen, P.-J. Chen, A Selective Voltammetric Method for Uric Acid and Dopamine Detection Using Clay-Modified Electrodes, Anal. Chem. 69 (1997)5087-5093.
106. X.-C. He, J.-Y. Mo, Electrocatalytic oxidation of NO at electrode modified with Nafion–Co–1,10-phenanthroline film and its application to NO detectionII, Analyst, 125 (2000) 793-795.
107. J.-A. Ni, H.-X. Ju, H.-Y. Chen, D. Leech, [Os(bpy)(PVP)Cl]Cl polymer and Nafion dual-film modified graphite electrode for the amperometric determination of trace amounts of norepinephrine210, Analyst, 123 (1998) 2895-2898.
108. Y. Hasebe, S. Toda, K. Aoki, H. Tonobe, S. Uchiyama, Specific and Amplified Current Responses to Histidine and Histamine Using Immobilized Copper–Monoamine Oxidase Membrane Electrode, Based on Novel Ascorbate Oxidase Activity Induced by Exogenous Ligands, Anal. Biochem. 251 (1997) 32-38.
109. A. Kikuchi, K. Suzuki, O. Okabayashi, H. Hoshino, K. Kataoka, Y. Sakurai and T. Okano, Glucose-Sensing Electrode Coated with Polymer Complex Gel Containing Phenylboronic Acid, Anal. Chem. 68 (1996)823-828.
110. C. Xu, H. Cai, P. He, Y. Fang, Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA, Analyst, 126 (2001) 62-65.
111. P. C. Pandey, S. Upadhyay, B. C. Upadhyay, H. C. Pathak, Ethanol Biosensors and Electrochemical Oxidation of NADH, Anal. Biochem. 260 (1998) 195-203.
112. M. K. Amini, S. Shahrokhian, V. Mirkhani, S. Tangestaninejad, Iron(II) Phthalocyanine-Modified Carbon-Paste Electrode for Potentiometric Detection of Ascorbic Acid, Anal. Biochem. 290 (2001)277-281.
113 E. Burestedt, A. Narvaez, T. Ruzgas, L. Gorton, E. Dominguez, J. Emneus, G. Marko-Varga, Rate-Limiting Steps of Tyrosinase-Modified Electrodes for the Detection of Catechol, Anal. Chem. 68 (1996)1605-1611.
114. R. S. Martin, A. J. Gawron, B. A. Fogarty, F. B. Regan, E. Dempsey, S. M. Lunte, Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry, Analyst, 126 (2001) 277-280.
115. J.-M. Zen, C.-W. Lo, P.-J. Chen, An Enzymatic Clay-Modified Electrode for Aerobic Glucose Monitoring with Dopamine as Mediator, Anal. Chem. 69 (1997)1669-1673.
116 P. Wang, X. Wang, L. Bi, G. Zhu, Renewable-surface amperometric nitrite sensor based on sol–gel-derived
silicomolybdate–methylsilicate–graphite composite material, Analyst, 125 (2000)1291-1294.
117. C. R. Raj, K. V. Gobi, T. O. Gobi, Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode, Bioelectrochemistry, 51 (2000) 181-186.
118. A. Ciszewski, G. Milczarek, Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modified by conductive polymeric nickel(II) tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin film, J. Electroanal. Chem. 413 (1996) 137-142.
119. E. K. W. Lai, P. D. Beattie, S. Holdcroft, Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films, Synthetic Metals, 84 (1997) 87-88.
120. C.-S. Fung, K.-Y. Wong, Electrocatalytic reduction of nitrite by copper complexes of 1,10-phenanthroline and 2,2′:6′,2〃-terpyridine, J. Electroanal. Chem. 401 (1996) 263-268.
121. B. Ogorevc, X. Cai, I. Grabec, Determination of traces of copper by anodic stripping voltammetry after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite, Anal. Chim. Acta, 305 (1995) 176-182.
122. K. Kolodsick, T. Ramstad, Determination of trace cyanide in 3-guanidinopropionic acid by stripping preconcentration/isolation followed by flow-injection analysis with amperometric detection at silver, Anal. Chim. Acta, 313 (1995)75-82.
123. A. J. Conesa, J. M. Pinilla, L. Hernandez, Determination of mebendazole in urine by cathodic stripping voltammetry, Anal. Chim. Acta, 331 (1996) 111-116.
124. J. Wang, G. Rivas, D. Luo, X. Cai, F. S. Valera, N. Dontha, DNA-Modified Electrode for the Detection of Aromatic Amines, Anal. Chem. 68 (1996)4365-4369.
125. J.-M. Zen, I-L. Chen, Y. Shih, Voltammetric determination of serotonin in human blood using a chemically modified electrode, Anal. Chim. Acta, 369 (1998) 103-108.
126. D. Liu, J. Liu, D. Tian, W. Hong, X. Zhou, J. C. Yu, Polymeric membrane silver-ion selective electrodes based on bis(dialkyldithiophosphates), Anal. Chim. Acta, 416 (2000) 139-144.
127. W. Wroblewski, M. Chudy, A. Dybko, Z. Brzozka, NH4+-sensitive chemically modified field effect transistors based on siloxane membranes for flow-cell applications, Anal. Chim. Acta, 401 (1999)105-110.
128. A. L. Hart, C. Matthews, W. A. Collier, Estimation of lactate in meat extracts by screen-printed sensors, Anal. Chim. Acta, 386 (1999) 7-12.
129. R. S. Givens, B. Matuszewski, Photochemistry of phosphate esters: an efficient method for the generation of electrophiles, J. Am. Chem. Soc. 106 (1984) 6860-6861.
130. C. D. Hodneland, M. Mrksich, Biomolecular Surfaces that Release Ligands under Electrochemical Control, J. Am. Chem. Soc. 122 (2000) 4235-4236.
131. D. G. Williams, D. C. Johnson, Pusled Voltammetric Detection of Arsenic(III) at Platinum Electrodes in acidic Media, Anal. Chem. 64 (1992) 1785-1789.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top