跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭光榮
研究生(外文):Kuang-Jung Cheng
論文名稱:都市戴奧辛與多環芳香烴的宿命與風險評估
論文名稱(外文):The Fate and Risk Assessment of Dioxins and PAHs in Urban Area
指導教授:陳俊成陳俊成引用關係
學位類別:博士
校院名稱:淡江大學
系所名稱:水資源及環境工程學系博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:218
中文關鍵詞:戴奧辛多環芳香烴多介質傳輸風險評估
外文關鍵詞:DioxinPAHs(Polycyclic Aromatic Hydrocarbons)multimedia transportrisk assessment
相關次數:
  • 被引用被引用:5
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究模擬大台北地區戴奧辛與多環芳香烴的宿,與居民之污染暴露風險。模擬區域包括台北市、台北縣、基隆市,先估計模擬區域之污染排放量後,再以污染物多介質逸壓模式,模擬17種毒性戴奧辛化合物及6種毒性多環芳香烴化合物,於多介質環境中之分佈。模擬介質包括空氣、懸浮微粒、水體、懸浮固體、土壤、底泥、植披與建築物表面之有機膜等。接著以人體多介質暴露模式(MMTD)計算人體的汙染暴露量,並推估其致癌風險。
本研究模擬結果歸納如下:
在多介質汙染宿命推估:
1、PCDD/Fs與PAHs在環境介質中分佈之濃度,PCDFs於魚體中濃度最小,PCDDs除了1,2,3,4,7,8-HxCDD於魚體濃度較空氣大外;PCDDs於魚體之濃度為最小;PAHs則是空氣濃度最小。PCDD/Fs與PAHs於都市環境中,於有機膜之濃度為最高,其原因為有機膜之有機碳分率均較其他介質高。
2、PCDD/Fs與PAHs在環境中之宿命:PCDD/Fs與PAHs最終累積於土壤中之比例最高,PCDD/Fs在環境中因對流與反應所造成之衰減移除,主要以空氣介質之對流現象佔最高之比例,而PAHs則是空氣介質之對流與反應移除佔最高比例。而整個環境中均是由空氣介質所造成之移除最高。
3、在持久時間上,空氣介質之持久時間最短,土壤、底泥及懸浮固體之持久時間最長。
4、PCDD/Fs之移動力慢需要長時間才能達到穩態。PAHs則約100000小時(11年)達到穩態。
5、將17種毒性PCDD/Fs先經TEF轉換成TEQ排放量,經多介質模擬後,其環境各介質濃度,均較分別對17種毒性PCDD/Fs,經多介質模擬後,各介質濃度轉換成TEQ之濃度為低。
在人體暴露風險評估:
1、在吸入、攝入及皮膚吸收三大暴露途徑中,戴奧辛與PAHs主要以攝入為主要暴露途徑。
2、在PAHs部分,男性暴露量最高為12.6 ng PEQ/day,發生於29歲;女性最高暴露量為9.83 ng PEQ/day,發生於56∼59歲間。
3、戴奧辛部分,男性暴露量最高為3.2 pg I-TEQ/day,發生於40~51歲間;女性最高暴露量為2.55 pg I-TEQ/day,發生於57∼59歲間。
4、考慮食物來源與食物吸收比率後,模擬出的終身致癌風險為:PAHs在男性為1.14×10-6,女性為1.06×10-6;戴奧辛在男性為4.04×10-6,女性為3.76×10-6。
5、本模擬只考慮多介質中之空氣、水、土壤及底泥濃度,且相關數據並非本地資料,所以結果僅供參考。
In this study, the resident’s exposure risk of dioxins and PAHs in Taipei Metropolitan area were assessed. In the assessment a multimedia transport model, the fugacity model, was applied to estimate the concentrations of seventeen toxic Dioxin compounds and six toxic PAHs(Polycyclic Aromatic Hydrocarbons) among the multimedia as the pollutant fate. The considered media includes air, water, soil, sediment, suspended solid, particular matter, plant cover, and the organic film to mimic building surface. The results from the multimedia transport model were then used for the subsequent risk assessment with a Multimedia Total Dose Analysis Model.
To summarize the multimedia transport simulation results and the exposure risk assessment of dioxins and PAHs in Taipei Metropolitan area, this study drew to the following conclusions:
The results of multimedia transport simulation:
1、For accumulated quantity of PCDD/Fs and PAHs in compartments, PCDFs has the least accumulated mass in fish. PCDFs also has the least concentration in fish except 1,2,3,4,7,8-HxCDD that has more concentration in air than in fish. PCDD/Fs and PAHs have the largest concentration on the organic film among the simulated media.
2、The fate of PCDD/Fs and PAHs in the multimedia: Most PCDD/Fs and PAHs were found to accumulate in the soil media eventually. The major sink of PCDD/Fs was the convection in air compartment while PAHs was convection and reaction are two major sink mechanisms for PAHs in air. Both PCDD and PAHs have the highest decayed percentage in the air media.
3、The shortest persistence time of pollutants occurred in air compartment, and the longest persistence time occurred in soil, sediment and suspended solid compartments.
4、The dynamic reaction of PCDD/Fs requires a longer time to reach stable equilibrium when compared to PAHs that requires 100000 hours to reach a stable equilibrium stage.

5、The concentrations calculated by an unified simulation approach (the 17 toxic Dioxin compounds are transferred to a unified 2,3,7,8-TCDD quantity by the TEQ base 2,3,7,8-TCDD toxicity) is less than those simulated by a multiple simulation (the 17 toxic Dioxin compounds are simulated separately) in all media.
For the exposure risk assessment results, the following results were summarized:
1、From the three exposed way, inhalation, take-in and skin absorption, it was found that intake is the main exposed way for Dioxin and PAHs.
2、The exposed dosage of PAHs was assessed and the human intake level is 12.6 ng PEQ/day at the age of 29 years old. The maximum PAHs exposed quantity of the female is 9.83 ng PEQ/day at the age of 56-59 years old.
3、The exposed dosage of Dioxin, was assessed and the human intake level is i 3.2 pg I-TEQ/day at the age of 40-51 years old. The maximum exposed quantity of the female is 2.55 pg I-TEQ/day at the age of 57-59 years old.
4、For PAHs, the carcinogenic risk of the male is 1.14×10-6 and is 1.06×10-6 for female. For Dioxin, the carcinogenic risk of the male is 4.04×10-6 and is 3.76×10-6 for female.
5、Since the combination just concern air, water, soil and sediment media and the local physiological data were not available, the results can be considered as preliminary results only.
目錄
目錄 I
表目錄 IV
圖目錄 VII
第1章 前言 1
1.1 研究緣起與目的 1
1.2 研究內容 2
第2章 文獻回顧 3
2.1 污染物特性 3
2.1.1 戴奧辛之特性 3
2.1.2 PAHs 15
2.2 多介質傳輸模式之發展 23
2.2.1 空間多介質模式(Spatial Multimedia Models) 23
2.2.2 均勻介質模式(Uniform models) 23
2.2.3 空間多介質區劃模式(Spatial Multimedia Compartment Model) 28
2.3 都市多介質模式(MUM) 29
第3章 研究方法 33
3.1 多介質傳輸模式 33
3.1.1 逸壓模式之架構 33
3.1.2 Fugacity模式理論 35
3.1.3 質量守恆方程式 37
3.1.4 介質的逸壓容量 39
3.1.5 污染物的傳輸係數(D value) 41
3.1.6 質傳係數 45
3.1.7 環境中的對流現象 53
3.1.8 反應相 53
3.2 逸壓模式的數值方法 55
第4章 人體暴露模式 56
4.1 模式理論 58
4.2 人體體重資料 60
4.3 人體的接觸程度 63
4.3.1 呼吸量 63
4.3.2 食物攝入量 64
4.3.3 不慎攝入量 69
4.4 人體的吸收係數 71
4.4.1 污染物經由呼吸而吸收 71
4.4.2 氣狀污染物經由呼吸而吸收 71
4.4.3 粒狀污染物經由呼吸而吸收 74
4.4.4 污染物經由攝入食物與水而吸收 76
4.5 皮膚吸收 77
4.5.1 氣狀污染物 77
4.5.2 土壤與塵埃 79
4.5.3 淋浴、洗澡與游泳 81
4.6 暴露量與食物鏈 82
4.6.1 污染物經由乾溼沈降進入水果、穀類與蔬菜 82
4.6.2 沈降速度 84
4.6.3 沖刷係數 86
4.6.4 葉類植物從土壤水分中吸收污染物 87
4.6.5 根莖類農作物從土壤中吸收污染物 88
4.6.6 污染物在一般牲畜與奶類牲畜中的累積 89
4.6.7 水生生物、魚類與貝類攝入污染物 91
4.7 污染物在人體的排泄╱分解 93
4.7.1 生理現象 93
4.7.2 污染物變質 94
4.8 污染物在室內/室外的濃度 95
第5章 案例模擬-大台北地區 97
5.1 模擬區選擇 97
5.2 排放量推估 101
5.2.1 戴奧辛 102
5.2.2 PAHs 108
5.3 模式輸入參數 112
5.3.1 地理資料 112
5.3.2 氣象參數 116
5.3.3 介質參數 116
5.3.4 對流參數 117
5.3.5 介質密度 117
5.3.6 植物參數 118
5.3.7 薄膜參數 119
5.4 結果與討論 121
5.4.1 PCDD/Fs 121
5.4.2 PAHs 138
5.4.3 敏感度分析(Sensitivity Analysis) 146
第6章 結論與建議 152
6.1 結論 152
6.1.1 多介質模擬 152
6.1.2 人體暴露與致癌風險 153
6.2 研究建議 154
參考文獻 155
附錄A 多介質傳輸係數 164
附錄B 相關模擬參數 167
附錄C PCDD/Fs多介質模擬結果 171
附錄D PAHs多介質模擬結果 206



表目錄
表2-1. 戴奧辛毒性當量係數 5
表2-2台灣地區歷年行業別戴奧辛排放量彙整 7
表2-3 環檢所91、92 年台灣地區環境空氣戴奧辛調查結果 8
表2-4 台灣大型焚化廠周界空氣中PCDD/Fs濃度值 9
表2-5 台灣大型焚化廠周界土壤中PCDD/Fs濃度值 10
表2-6 台灣大型焚化廠周界植物中PCDD/Fs濃度值 11
表2-7 不同來源PAHs之比例 15
表2-8 PAHs 之致癌性與致突變性強度 16
表2-9 PAHs潛勢當量係數表 17
表2-10 PAHs的監測資料 20
表3-1 各介質之Fugacity質量守恆方程式 38
表3-2 模式中所用介質對污染物容納指標Z值 40
表3-3 介質間傳輸的D值 42
表3-4 Fugacity模式中內定的質傳係數 53
表4.1 不同年齡與性別的人體體重結構 62
表4-2 人體呼吸速率資料 64
表4-3 Classification of Major Food/Liquid Classes and Subclasses 66
表4.4 Mean and Standard Error for Daily Intake (grams) of Major Food Types or Subclasses for Dairy Products, Breads/Grains, Beef, and Fin Fish by Age and Sex Type 67
表4.5 Mean and Standard Error for Daily Intake (grams) of Major Food Types or Subclasses for Shellfish, Exposed/Leafy Vegetables/ Fruits, Root Vegetables, and Tap Water by Age and Sex Type 68
表4-6 土壤攝取量與年齡層的關係 70
表4-7 土壤攝取量與年齡及定點的關係 70
表4-8 Averge Time Spent at a Location 79
表4-9 土壤吸收與年齡的關係 80
表4-10 Interception Constant for Various Types of Vegetation 85
表4-11 方程式4.47中,各參數所參考引用的數值列表 91
表4-12 細分介質之 、 值 96
表5-1 都市及區域發展指標 99
表5-2 94年度垃圾清運處理狀況 100
表5-3 95年大台北地區焚化爐處理量 100
表5-4 94年大台北汽機車數 100
表5-5 戴奧辛排放係數 103
表5-6 大台北地區戴奧辛排放量 104
表5-7 PCDDs物化特性表 105
表5-8 PCDFs物化特性表(一) 106
表5-9 PCDFs物化特性表(二) 107
表5-10 PAHs點源排放量推估 108
表5-11 不同車種排出PAHs成份之重量組成百分比(%) 109
表5-12 模擬區內PAHs排放量 110
表5-13 PAHs物化特性表 111
表5-14 大台北地區不滲水面積表 114
表5-15 2005年底台北市現有營造建築物棟數 115
表5-16 福山地區建造期及成熟期林分生物量 118
表5-17 不同林分樹冠截流率比較 119
表5-18 模擬區介質參考表 120
表5-19 PCDD/Fs單一物種比較 122
表5-20 本研究與李佳宜(1999)模擬設定差異 122
表5-21 本研究Case1多次模擬、Case2一次模擬及陳守憲(1998)比較 123
表5-23 本研究與陳守憲(1998)模擬假設差異 124
表5-24 本研究與相關實測比較 124
表5-25 PAHs相關研究實測比較 138
表5-26 本研究與邱啟榮(1998)及陳英欽(1999)模擬設定比較 138
表5-27 PAHs穩態濃度表 140
表C-1 2,3,7,8-TCDD模擬結果 172
表C-2 1,2,3,7,8-PeCDD模擬結果 174
表C-3 1,2,3,4,7,8-HxCDD模擬結果 176
表C-4 1,2,3,6,7,8-HxCDD模擬結果 178
表C-5 1,2,3,7,8,9-HxCDD模擬結果 180
表C-6 1,2,3,4,6,7,8-HpCDD模擬結果 182
表C-7 OCDD模擬結果 184
表C-8 2,3,7,8-TCDF模擬結果 186
表C-9 1,2,3,7,8-PeCDF模擬結果 188
表C-10 2,3,4,7,8-PeCDF模擬結果 190
表C-11 1,2,3,4,7,8-HxCDF模擬結果 192
表C-12 1,2,3,6,7,8-HxCDF模擬結果 194
表C-13 1,2,3,7,8,9-HxCDF模擬結果 196
表C-14 2,3,4,6,7,8-HxCDF模擬結果 198
表C-15 1,2,3,4,6,7,8-HpCDF模擬結果 200
表C-16 1,2,3,4,7,8,9-HpCDF模擬結果 202
表C-17 OCDF模擬結果 204
表D-1 BaA模擬結果 207
表D-2 BaP模擬結果 209
表D-3 BbF模擬結果 211
表D-4 BkF模擬結果 213
表D-5 Chr模擬結果 215
表D-6 IDP模擬結果 217



圖目錄
圖3-1本研究架構圖 34
圖4-1 MMTD模式流程圖 57
圖5-1 模擬範圍圖 98
圖5-2 大台北水域圖 113
圖5-3 PCDDs累積質量分佈圖 127
圖5-4 PCDFs累積質量分佈圖 127
圖5-5 PCDDs持久時間圖 128
圖5-6 PCDFs持久時間圖 128
圖5-7 PCDDs穩態模擬各介質濃度圖 129
圖5-8 PCDFs穩態模擬各介質濃度圖 129
圖5-9 Case1暴露路徑分佈圖 132
圖5-10 case1攝入路徑分佈圖 132
圖5-11 case1暴露量與年齡之關係 133
圖5-12 case1終生平均每日暴露劑量 134
圖5-13 case1風險與年齡關係 134
圖5-14 Case2暴露路徑分佈圖 135
圖5-15 case2攝取路徑分佈圖 135
圖5-16 case2暴露量與年齡之關係 136
圖5-17 case2終生平均每日暴露劑量 137
圖5-18 case2風險與年齡關係 137
圖5-19 PAHs累積質量分佈圖 140
圖5-20 PAHs持久時間圖 140
圖5-21 PAHs穩態模擬各介質濃度圖 141
圖5-22 PAHs暴露路徑分佈圖 143
圖5-23 PAHs攝取路徑分佈圖 143
圖5-24 PAHs暴露量與年齡之關係 144
圖5-25 PAHs終生平均每日暴露劑量 145
圖5-26 PAHs風險與年齡關係 145
圖5-27 混合層高度對模式之敏感度分析 148
圖5-28 風速對模式之敏感度分析 148
圖5-29 水停留時間對模式之敏感度分析 149
圖5-30 水深對模式之敏感度分析 149
圖5-31 土壤深度對模式之敏感度分析 150
圖5-32 底泥深度對模式之敏感度分析 150
圖5-33 土壤有機碳分率對模式之敏感度分析 151
圖C-1 2,3,7,8-TCDD於各介質分佈情形 172
圖C-2 2,3,7,8-TCDD於各介質傳輸情形 173
圖C-3 2,3,7,8-TCDD於時間濃度圖 173
圖C-4 1,2,3,7,8-PeCDD於各介質分佈情形 174
圖C-5 1,2,3,7,8-PeCDD於各介質傳輸情形 175
圖C-6 1,2,3,7,8-PeCDD於時間濃度圖 175
圖C-7 1,2,3,4,7,8-HxCDD於各介質分佈情形 176
圖C-8 1,2,3,4,7,8-HxCDD於各介質傳輸情形 177
圖C-9 1,2,3,4,7,8-HxCDD於時間濃度圖 177
圖C-10 1,2,3,6,7,8-HxCDD於各介質分佈情形 178
圖C-11 1,2,3,6,7,8-HxCDD於各介質傳輸情形 179
圖C-12 1,2,3,6,7,8-HxCDD於時間濃度圖 179
圖C-13 1,2,3,7,8,9-HxCDD於各介質分佈情形 180
圖C-14 1,2,3,7,8,9-HxCDD於各介質傳輸情形 181
圖C-15 1,2,3,7,8,9-HxCDD於時間濃度圖 181
圖C-16 1,2,3,4,6,7,8-HpCDD於各介質分佈情形 182
圖C-17 1,2,3,4,6,7,8-HpCDD於各介質傳輸情形 183
圖C-18 1,2,3,4,6,7,8-HpCDD於時間濃度圖 183
圖C-19 OCDD於各介質分佈情形 184
圖C-20 OCDD於各介質傳輸情形 185
圖C-21 OCDD於時間濃度圖 185
圖C-22 2,3,7,8-TCDF於各介質分佈情形 186
圖C-23 2,3,7,8-TCDF於各介質傳輸情形 187
圖C-24 2,3,7,8-TCDF時間濃度圖 187
圖C-25 1,2,3,7,8-PeCDF於各介質分佈情形 188
圖C-26 1,2,3,7,8-PeCDF於各介質傳輸情形 189
圖C-27 1,2,3,7,8-PeCDF於時間濃度圖 189
圖C-28 2,3,4,7,8-PeCDF於各介質分佈情形 190
圖C-29 2,3,4,7,8-PeCDF於各介質傳輸情形 191
圖C-30 2,3,4,7,8-PeCDF於時間濃度圖 191
圖C-31 1,2,3,4,7,8-HxCDF於各介質分佈情形 192
圖C-32 1,2,3,4,7,8-HxCDF於各介質傳輸情形 193
圖C-33 1,2,3,4,7,8-HxCDF時間濃度圖 193
圖C-34 1,2,3,6,7,8-HxCDF於各介質分佈情形 194
圖C-35 1,2,3,6,7,8-HxCDF於各介質傳輸情形 195
圖C-36 1,2,3,6,7,8-HxCDF於時間濃度圖 195
圖C-37 1,2,3,7,8,9-HxCDF於各介質分佈情形 196
圖C-38 1,2,3,7,8,9-HxCDF於各介質傳輸情形 197
圖C-39 1,2,3,7,8,9-HxCDF時間濃度圖 197
圖C-40 2,3,4,6,7,8-HxCDF於各介質分佈情形 198
圖C-41 2,3,4,6,7,8-HxCDF於各介質傳輸情形 199
圖C-42 2,3,4,6,7,8-HxCDF於時間濃度圖 199
圖C-43 1,2,3,4,6,7,8-HpCDF於各介質分佈情形 200
圖C-44 1,2,3,4,6,7,8-HpCDF於各介質傳輸情形 201
圖C-45 1,2,3,4,6,7,8-HpCDF於時間濃度圖 201
圖C-46 1,2,3,4,7,8,9-HpCDF於各介質分佈情形 202
圖C-47 1,2,3,4,7,8,9-HpCDF於各介質傳輸情形 203
圖C-48 1,2,3,4,7,8,9-HpCDF於時間濃度圖 203
圖C-49 OCDF於各介質分佈情形 204
圖C-50 OCDF於各介質傳輸情形 205
圖C-51 OCDF時間濃度圖 205
圖D-1 BaA於各介質分佈情形 207
圖D-2 BaA於各介質傳輸情形 208
圖D-3 BaA於時間濃度圖 208
圖D-4 BaA於各介質分佈情形 209
圖D-5 BaA於各介質傳輸情形 210
圖D-6 BaA於時間濃度圖 210
圖D-7 BbF於各介質分佈情形 211
圖D-8 BbF於各介質傳輸情形 212
圖D-9 BbF於時間濃度圖 212
圖D-10 BkF於各介質分佈情形 213
圖D-11 BkF於各介質傳輸情形 214
圖D-12 BkF於時間濃度圖 214
圖D-13 Chr於各介質分佈情形 215
圖D-14 Chr於各介質傳輸情形 216
圖D-15 Chr於時間濃度圖 216
圖D-16 IDP於各介質分佈情形 217
圖D-17 IDP於各介質傳輸情形 218
圖D-18 IDP於時間濃度圖 218
Bennett, D. H., W. E. Kastenberg, et al. (1999). "General formulation of characteristic time for persistent chemicals in a multimedia environment." Environmental Science and Technology 33(3): 503-509.
Bennett, D. H., T. E. McKone, et al. (1998). "General formulation of characteristic travel distance for semivolatile organic chemicals in a multimedia environment." Environmental Science and Technology 32(24): 4023-4030.
Bru, R., J. M. Carrasco, et al. (1998). "Unsteady state fugacity model by a dynamic control system." Applied Mathematical Modelling 22(7): 485-494.
Brubaker, W. W. and R. A. Hites (1998). "OH Reaction Kinetics of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans." J. Phys. Chem. A 102(6): 915-921.
Butt, C. M., M. L. Diamond, et al. (2004). "Semivolatile organic compounds in window films from Lower Manhattan after the September 11th World Trade Center attacks." Environmental Science and Technology 38(13): 3514-3524.
Butt, C. M., M. L. Diamond, et al. (2004). "Spatial Distribution of Polybrominated Diphenyl Ethers in Southern Ontario As Measured in Indoor and Outdoor Window Organic Films." Environmental Science and Technology 38(3): 724-731.
Cahill, T. M., I. Cousins, et al. (2003). "Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants." Environmental Toxicology and Chemistry 22(1): 26-34.
Cahill, T. M., I. Cousins, et al. (2003). "General fugacity-based model to predict the environmental fate of multiple chemical species." Environmental Toxicology and Chemistry 22(3): 483-493.
Cahill, T. M. and D. Mackay (2003). "Complexity in multimedia mass balance models: When are simple models adequate and when are more complex models necessary?" Environmental Toxicology and Chemistry 22(6): 1404-1412.
Cahill, T. M. and D. Mackay (2003). "A high-resolution model for estimating the environmental fate of multi-species chemicals: application to malathion and pentachlorophenol." Chemosphere 53(5): 571-581.
Chetty, S. , (1991) "Multimedia Total Dose analysis, MMTD", Master Thesis, UCLA
Clayton, P,; Davis, B.; Duarte-Davidson, R.; Halsall, C.; Jones, K. C.; Jones, P. (1993) "PCDDs and PCDFs in ambient UK urban air", Presented at: Dioxin ’93, 13th Symposium on Dioxins and Related Compounds; Vienna, Austria.
Clay, R. E., (1994) "Multimedia Partitioning of Particle-Bound Organics", Journal of Hazardous Materials, Vol. 37, pp. 507-526.
Clay, R.E., (1992) "Multimedia Environmental distribution of Gaseous Dissolved, and Particle-Bound Pollutants", Master Thesis, UCLA.
Cohen, Y., (1989) "Intermedia Pollutant Transport", Plenum Press, New York.
Cohen, Y., (1986a) "Intermedia Transport Modeling in Multimedia systems. Pollutants in a Multimedia Environment", Plenum Press, New York.
Cohen, Y., (1986b) "Organic Pollutant Transport", Environ. Sci. and Technol., Vol. 20, No. 6, pp. 538-544.
Cohen, Y., (1986c) "Pollutants in a Multimedia Environment ", Plenum Press, New York.
Cohen, Y.; Tsai, W.; Mayer, G.; S. Chetty (1990) "Dynamic Partitioning of Organic Chemicals in Regional Environments: A Multimedia Screening-Level Modeling Approach", Environ. Sci. and Technol., Vol. 24, No. 10, pp. 1549-1558.
Cousins, I. T. and D. Mackay (2001). "Strategies for including vegetation compartments in multimedia models." Chemosphere 44(4): 643-654.
Devillers, J., S. Bintein, et al. (1995). "Chemfrance: a regional level III fugacity model applied to France." Chemosphere 30(3): 457-476.
Diamond, M. L., S. E. Gingrich, et al. (2000). "Evidence for organic film on an impervious urban surface: Characterization and potential teratogenic effects." Environmental Science and Technology 34(14): 2900-2908.
Diamond, M. L. and D. A. Priemer (2001). "Developing a multimedia model of chemical dynamics in an urban area." Chemosphere 44(7): 1655-1667.
Eitzer, B. D. and R. A. Hites (1989). "Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans." Environmental Science and Technology 23(11): 1396-1401.
Encinas, D., I. Calzada, et al. (2004). "Scavenging ratios in an urban area in the Spanish Basque Country." Aerosol Science and Technology 38(7): 685-691.
Fiedler, H. (2007). "National PCDD/PCDF release inventories under the Stockholm Convention on Persistent Organic Pollutants." Chemosphere 67(9): 96-108.
Finizio, A., D. Mackay, et al. (1997). "Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols." Atmospheric Environment 31(15): 2289-2296.
Foster, K. L., S. Sharpe, et al. (2006). "The role of multimedia mass balance models for assessing the effects of volatile organic compound emissions on urban air quality." Atmospheric Environment 40(16): 2986-2994.
Gash, J. H. C., C. R. Lloyd, et al. (1995). "Estimating sparse forest rainfall interception with an analytical model." Journal of Hydrology 170(1-4): 79.
Gimmer, G. (1983). "Environmental Carcinogens: Polycylic Aromatic Hydrocarbon." Environmental Science & Technology 24: 1581-1585.
Gunasekera, M. Y. and D. W. Edwards (2006). "Assessing the inherent atmospheric environmental friendliness of chemical process routes: An unsteady state distribution approach for a catastrophic release." Computers and Chemical Engineering 30(4): 744-757.
Harner, T. and T. F. Bidleman (1996). "Measurements of octanol-air partition coefficients for polychlorinated biphenyls." Journal of Chemical and Engineering Data 41(4): 895-899.
Harner, T. and T. F. Bidleman (1998). "Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes." Journal of Chemical and Engineering Data 43(1): 40-46.
Harner, T. and T. F. Bidleman (1998). "Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air." Environmental Science and Technology 32(10): 1494-1502.
Hawley, J., (1985) "Assessment of Health Risk from Exposure to Contaminated Soil", Risk Analysis, 5, pp. 289-302.
Hertwich, E. G. (2001). "Fugacity superposition: a new approach to dynamic multimedia fate modeling." Chemosphere 44(4): 843-853.
Jaffrezo, J. L. and J. L. Colin (1988). "rain-aerosol coupling in urban area: scavenging ratio measurement and identification of some transfer processes." Atmospheric Environment 22(5): 929-935.
Kaupp, H. and M. S. McLachlan (2000). "Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) within the full size range of atmospheric particles." Atmospheric Environment 34(1): 73-83.
Kimbrough, R.D.; Falk, H.; Stehr, P., (1984) "Health Implications of 2,3,7,8, TCDD Contamination of Residential Soil", Journal of Toxicology and Environmental Health, 14, pp. 47-93.

Klepper, O. and H. A. den Hollander (1999). "A comparison of spatially explicit and box models for the fate of chemicals in water, air and soil in Europe." Ecological Modelling 116(2-3): 183 - 202.
Kwamena, N.-O. A., J. P. Clarke, et al. (2007). "Assessing the importance of heterogeneous reactions of polycyclic aromatic hydrocarbons in the urban atmosphere using the Multimedia Urban Model." Atmospheric Environment 41(1): 37-50.
Lam, B., M. L. Diamond, et al. (2005). "Chemical composition of surface films on glass windows and implications for atmospheric chemistry." Atmospheric Environment 39(35): 6578-6586.
Lee, C.-C., Y. L. Guo, et al. (2006). "Human PCDD/PCDF levels near a pentachlorophenol contamination site in Tainan, Taiwan." Chemosphere 65(3): 436-448.
Mackay, D.(1991) "Multimedia Environmental Models : The Fugacity Approach", Lewis Publishers, Inc.
Maddalena, R. L., T. E. McKone, et al. (1995). "Comparison of Multi-Media Transport and Transformation Models: Regional Fugacity Model vs. CalTOX." Chemosphere 30(5): 869-889.
Marple L., R. Brunck., et al.(1986). "Water Solubility of 2,3,7,8-tetrachlorodibenzo-p- dioxin", Environ. Sci. Technol. (20)2.:180-182.
McCrady, J. K. and S. P. Maggard (1993). "Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage." Environ. Sci. Technol. 27(2): 343-350.
McKone, T.E., (1987) "Human Exposure to Volatile Organic Compounds in Household Tap Water: The Indoor Inhalation Pathway", Environmantal Science and Technology, 21, no. 12, pp. 1194-1201
McKone, T.E. (1993). CalTOX: "A Multimedia Total-Exposure Model For Hazardous- Wastes Sites: Part I: Executive Summary." prepared for the State of California, Department of Toxic Substances Control, Lawrence Livermore National Laboratory, Livermore, CA, UCRL- CR-111456PtI.
McKone, T.E. (1993). "CalTOX: A Multimedia Total-Exposure Model For Hazardous- Wastes Sites: Part II: Multimedia Transport and Transformation Model." prepared for the State of California, Department of Toxic Substances Control, Lawrence Livermore National Laboratory, Livermore, CA, UCRLCR-1l1456PtI.
Misra, P. K., W. H. Chan, et al. (1985). "Scavenging Ratios of Acidic Pollutants and Their Use in Long-Range Transport Models." Atmospheric Environment 19(9): 1471-1475.
Muller, H., Prohl, G., (1993) "A dynamic model for assessing radiological consequences of nuclear accidents." Health Phys. 64: 232-252.
Nobel, P.S. (1991). "Physichemical and Environmental Plant Physiolgy." Academic Press, San Diego, CA.
Nowak, D. J., D. E. Crane, et al. (2006). "Air pollution removal by urban trees and shrubs in the United States", Urban Forestry & Urban Greening 4 :115–123.
Nowak, D. J., R. A. Rowntree, et al. (1996). "Measuring and analyzing urban tree cover", Landscape and Urban Planning. 36:49-57.
Offenberg, J. H. and J. E. Baker (2002). "Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect." Environmental Science and Technology 36(17): 3763-3771.
Palm, A. (2001). The Environmental Fate of Polybrominated Diphenyl Ethers in the Centre of Stockholm - Assessment Using a Multimedia Fugacity Model. Stockholm, Sweden, Umea Univerity. Master Thesis.
Paraiba, L. C., J. M. Carrasco, et al. (1999). "Level IV fugacity model by a continuous time control system." Chemosphere 38(8): 1763-1775.
Paterson, S., Mackay, D. (1995) "Interpreting chem.ical partitioning in soil-plant-air system whit a fugacity model." In: Trapp, S., McFarlane, J. (Eds.), Plant Contamination, Modelling and Simulation of organic Chemical Processes. Lewis Publishers, Boca Raton, FL, pp. 191-213.
Powe, N. A. and K. G. Willis (2002). "Mortality and morbidity benefits of air pollution absorption by woodland." Social & Environmental Benefits of Forestry Phase 2.
Priemer, D. A. and M. L. Diamond (2002). "Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed." Environmental Science and Technology 36(5): 1004-1013.
Rangarajan, C. and C. D. Eapen (1984). "Fitting empirical equations to rain scavenging ratios of atmospheric radioactive aerosols." Atmospheric Environment 18(11): 2503-2506.
Rayne, S., M. G. Ikonomou, et al. (2005). "Polychlorinated dioxins and furans from the World Trade Center attacks in exterior window films from lower Manhattan in New York City." Environmental Science and Technology 39(7): 1995-2003.
Sahu, S. K., G. G. Pandit, et al. (2004). "Precipitation scavenging of polycyclic aromatic hydrocarbons in Mumbai, India." Science of the Total Environment 318(1-3): 245-249.
Severinsen, M. and T. Jager (1998). "Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics." Chemosphere 37(1): 41-62.
Simcik, M. F. (2004). "The importance of surface adsorption on the washout of semivolatile organic compounds by rain." Atmospheric Environment 38(3): 491-501.
Simpson, A. J., B. Lam, et al. (2006). "Assessing the organic composition of urban surface films using nuclear magnetic resonance spectroscopy." Chemosphere 63(1): 142-152.
Suzuki, N., M. Yasuda, et al. (1998). "Model simulation of environmental profile transformation and fate of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the multimedia environmental fate model." Chemosphere 37(9-12): 2239-2250.
Suzuki, N., M. Yasuda, et al. (2000). "Simulation of long-term environmental dynamics of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans using the dynamic multimedia environmental fate model and its implication to the time trend analysis of dioxins." Chemosphere 40(9-11): 969-976.
Theurer, W. (1999). "Typical building arrangements for urban air pollution modelling." Atmospheric Environment 33(24-25): 4057-4066.
Trapp, S. Matthies, M. (1997). "Modeling volatilization of PCDD/F from soil and uptake into vegetation." Environ. Sci. Technol. 31:71-74.
Tuominen, J., S. Salomaa, et al. (1988). "Polynuclear Aromatic Compounds and Genotoxicity in Particulate and Vapor Phases of Ambient of Air: Effect of Traffic, Season and Meteorological Conditions." Envior. Sci. Technol. 10: 7.
Turunen, M. Huttunen S., (1990) "A review of the response of spicuticular wax of conifer needles to air polluteon." J. Environ. Qual. 19:35-45.
U.S. Department of Energy, (1994) "U.S. Environmental Protection Agency Integrated Risk Information System And Health Effects Assessment Summary Table", DE-AC05-84OR21400.
van de Meent, D. and J. H. M. de Bruijn (1995). "A modeling procedure to evaluate the coherence of independently derived environmental quality objectives for air, water and soil." Environmental Toxicology and Chemistry 14(1): 177-186.
Wania, F., K. Breivik, et al. (2006). "CoZMo-POP 2 ??A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants." Environmental Modelling and Software 21(6): 868-884.
Wania, F. and D. Mackay (1995). "A global distribution model for persistent organic chemicals." Science of the Total Environment 160-161: 211-232.
Whicker, W.F., Kirchner, T.B., (1987) "Pathway: a dynamic food-chain model to predict radionuclide ingestion after fallout deposition." Health Phys. 52: 717-737.
WHO (2003). "Health risks of persistent organic pollutants from long-range transboundary air pollution."
Yang, Y.; Nelson, C.B., (1984) "An Estimation of the Daily Average Food Intake by Age and Sex for use in Assessing the Radionuclide Intake of Individuals in the General Population", EPA/520/1-84/021, Office of Radiation Programs, Washington DC, U.S.A
Zhang, Q., J. C. Crittenden, et al. (2003). "Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region." Chemosphere 50(10): 1377-1397.
行政院環境保護署 (2003). 大氣中PAHs 於粒狀物上分布之監測調查.
行政院環境保護署 (2004). 大型垃圾焚化廠周界空氣、植物及土壤中戴奧辛含量調查計畫
李佳宜 (1999). 戴奧辛與有機污染物之多介質傳輸研究. 淡江大學水資源及環境工程學系. 碩士論文.
李明燕 (2002). 區域風險評估與不確定性分析—以台灣九座焚化爐為例. 國立臺灣大學環境工程學研究所. 碩士論文.
李昭賢 (1997). 揮發性有機物於多介質之傳輸模擬. 淡江大學水資源及環境工程學系. 碩士論文.
林芝寧 (2001). 新竹地區毒性化學物質流布之風險評估. 淡江大學水資源及環境工程學系. 碩士論文.
林國銓, 洪富文, 游漢明, 馬復京 (1994). "福山試驗林闊葉林生態系生物量與葉面積指數的累積與分佈." 林業試驗所研究報告季刊 9: 17.
林龍富 (2006). 污染源及環境介質中戴奧辛/呋喃之特徵. 國立成功大學環境工程學系. 博士論文.
邱啟榮 (1998). 多環芳香組於多介質的傳輸模擬. 淡江大學水資源及環境工程學系. 碩士論文.
侯裕文 (2001). 應用Fugacity模式簡化風險評估之可行性研究— 以石化工業區為例. 國立雲林科技大學環境與安全工程技術研究所. 碩士論文.
洪世明 (2003). 焚化廠戴奧辛之健康風險評估及其大氣物理及化學反應模擬. 國立雲林科技大學環境與安全工程系碩士班. 碩士.
唐琦 (2004). 天然香楠林之微氣候特性研究. 國立中興大學水土保持學系. 博士論文.
張志雄 (1995). 汽車操作參數對汽車排放多環芳香化合物趨勢影響之比較. 國立成功大學環境工程學研究所. 碩士論文.
張俊欽 (2001). 大氣中S-VOCs 分佈係數影響多介質傳輸模式之研究. 國立雲林科技大學環境與安全工程系碩士班. 碩士論文.
陳守憲 (1998). 污染物宿命與風險評估與整合系統. 淡江大學水資源及環境工程學系. 碩士論文.
陳佳玫 (2003). 大氣中多環芳香烴化合物特性與來源分析. 朝陽科技大學環境工程與管理系. 碩士論文.
陳英欽 (1999). 有機化合物於多介質之傳輸模擬及其風險評估. 淡江大學水資源及環境工程學系. 碩士論文.
湯鴻志 (1991). 都市大氣中多環芳香碳氫化合物反應性研究. 國立臺灣大學環境工程學研究所. 碩士論文.
黃富昌 (2004). 土壤結構及化性對有機污染物吸/脫附特性之研究. 國立中央大學環境工程研究所. 博士論文.
鄭百乘 (2003). 台灣地區周界環境中戴奧辛指紋圖譜和分佈之探討. 國立清華大學化學系. 博士論文.
金相燦 (1998). 環境毒性有機物污染化學. 淑馨出版社.
許蕙琳 (1996). 大氣中多環芳香烴化合物之粒徑分佈及乾沈降研究. 國立成功大學環境工程學研究所. 博士論文.
湯鴻志 (1991),都市大氣中多環芳香碳氫化合物反應性研究,國立臺灣大學環境工程學研究所. 碩士論文.
行政院經建會 (2007). 都市及區域發展統計彙編-95年版.
台北市政府 (2007). 95年台北市統計年報
台北縣政府 (2006). 94年台北縣統計要覽
基隆市政府 (2006). 94年基隆市統計要覽
經濟部水利屬水文水資源資料管理供應系統. http://gweb.wra.gov.tw/wrweb/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top