參 考 文 獻
一、國內部分
1.丁國玄(1995),台灣股市的隨機漫步假說與平均反轉現象,國立清華大學經濟學研究所碩士論文。2.沈中華、何中達、陳江明(1995),臺灣股票市場報酬率之預測模型--平均數復歸行為之應用,管理科學學報,12-1,43-61頁。3.林才熙(1989),以技術分析方法之獲利性檢定台灣股市之弱式效率-CRISMA交易系統之研究,國立台灣大學商學研究所碩士論文。4.洪萌馡(2001),遠期外匯溢價之非線性研究--兼論外匯市場效率性,國立中正大學國際經濟研究所碩士論文。5.陳正榮(2001),以濾嘴法則檢驗台灣股票市場弱式效率性之研究,高雄第一科技大學財務管理系碩士論文。6.陳昇(1984),濾嘴法則與股票市場效率性檢定,國¬¬立交通大學管理科學研究所碩士論文。7.黃淑惠(1988),我國遠期外匯市場效率性及風險補償之探討,東海大學企業管理研究所碩士論文。8.趙志遠(2003),臺灣股市之效率檢定及多因素模型之探討--長期追蹤資料之計量分析,國立中央大學產業經濟研究所碩士論文。9.賴勝章(1989),台灣股票市場弱式效率性實證研究--以技術分析檢驗,國立台灣大學商學研究所碩士論文。10.儲于超(2000),亞洲股市平均數復歸現象與動態關係之探討,輔仁大學金融研究所碩士論文。11.顏錫銘(1991),亞太盆地股票市場價格行為之比較研究,管理科學學報,第八卷第一期, 1-18頁。二、國外部份
1.Ayadi, O. F. and C. S. Pyum (1994), “The Application of the Variance Ratio Test to the Korean Securities Market,” Journal of Banking and Finance, Vol. 18, pp. 643–658.
2.Belaire-Franch, J. and K. K. Kopong (2005), “A Variance Ratio Test of the
Behavior of Some FTSE Equity Indices Using Ranks and Signs,” Review of Quantitative Finance and Accounting, Vol. 24, pp. 93–107.
3.Beveridge, S. and C. Oickle (1997), “Long Memory in the Canadian Stock Market,” Applied Financial Economics, Vol. 7, pp. 667–672.
4.Blasco, N., C. Rio and R. Santamaria (1997), “The Random Walk Hypothesis in the Spanish Stock Market: 1980–1992,” Journal of Business Finance and Accounting, Vol. 24, pp. 667–683.
5.Campbell, B. and J. M. Dufour (1997), “Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter,” International Economic Review, Vol. 38, pp. 151-173.
6.Chang, K. P., and K. S. Ting (2000), “A Variance Ratio Test of the Random Walk Hypothesis for Taiwan’s Stock Market,” Applied Financial Economics, Vol. 10, pp. 525-532.
7.Chelly-Steeley, P. (2001), “Mean Reversion in the Horizon Returns of UK Portfolios,” Journal of Business Finance & Accounting, Vol. 28, pp. 107–126.
8.Dickey, D. and W. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal of the American Statistical Association, Vol. 74, pp. 427-431.
9.Eldridge, R. M., C. Bernhardt and I. Mulvey (1993), “Evidence of Chaos in the S&P Cash Index,” Advances in Futures and Options Research, Vol. 6, pp. 176–192.
10.Engle, R. F., (1982), “Autoregressive Conditional Heteroscedasdicity withEstimates of the Variance of U.K. Inflation,” Econometrica, Vol. 50, pp. 987–1008.
11.Engle, R. and S. Yoo (1987), “Forecasting and testing in co-integrated systems,” Journal of Econometrics, Vol. 35, pp. 143–159.
12.Fama, E. (1965), “The Behaviour of Stock Market Prices,” Journal of Business, Vol. 38, pp. 34–105.
13.Gil and Luis (2000), “Mean Reversion in the Real Exchange Rates,” Economics Letters, Vol. 69, No. 3, pp. 285–288.
14.Granger, C. and P. Newbold (1974), “Spurious Regression in Econometrics,” Journal of Econometrics, Vol. 2, pp. 111–120.
15.Greene, M. T. and B. D. Fieltz (1977), “Long Term Dependence in Common Stock Returns,” Journal of Financial Economics, Vol. 4, pp. 339–349.
16.Hsieh (1991), “Chaos and Nonlinear Dynamics: Application to Financial Markets,” Journal of Finance, Vol. 46, issue 5, pp. 1839–1877.
17.Kohers, T., V. Pandey and G. Kohers (1997), Quarterly Review of Economics and Finance, Vol. 37, issue 2, pp. 523–545.
18.Lee, C. I. and I. Mathur (1999), “Efficiency Tests in the Spanish Futures Markets,” Journal of Futures Markets, Vol. 19, pp. 59–77.
19.Liu, C. Y. and J. He (1991), “A Variance Ratio Test of Random Walks in Foreign Exchange Rates.” Journal of Finance, Vol. 46, pp. 773–785.
20.Lo, A .W. and C. MacKinlay (1988), “Stock Market Prices do not Follow Random walk: Evidence from a Simple Specification Test,” Review of Financial Studies, Vol. 1, pp. 41–66.
21.Lo, A. W. and C. MacKinlay (1988), “Stock Market Prices do not FollowRandom Walk: Evidence from a Simple Specification Test,” Review of Financial Studies, Vol. 1, pp. 41–66.
22.Lo, A. W. and C. MacKinlay (1989), “The size and power of the variance ratio test in finite samples: A Monte Carlo investigation,” Journal of Econometrics, Vol. 40, pp. 203–238.
23.Luger, G. F. (2003), “Structures and Strategies for Complex Problem Solving,” Artificial intelligence, 4e, Addison Wesley.
24.Mollick, A. V. (1999), “The Real Exchange Rate in Brazil Mean Reversion or Random Walk in the Long Run?” International Review of Economics & Finance, Vol. 8, No. 1, pp. 115–126.
25.Opong, K. K., D. Sprevak and P. A. Hamill (2000), Applied Financial Economics, Vol. 10, issue 6, pp. 693–700.
26.Phillips, P. C. B. and P. Perron (1988), “Testing for a Unit Root in Time Series Regression,” Biometrika, Vol. 75, pp. 335–346.
27.Phillips, P. C. B. (1986), “Testing for a Unit Root in Time Series Regression,” Biometrika, Vol. 75, pp. 33–346.
28.Poterba, J. M. and L. H. Summers (1988), “Mean Reversion in Stock Prices: Evidence and Implications,” Journal of Financial Economics, Vol. 22, pp. 27–59.
29.Robinsion, P. M. (1994), “Efficient Test of Nonstationary Hypotheses,” Journal of the American Statistical Association, Vol. 89, pp. 1420–1437.
30.Said, S. E. and D. A. Dickey (1984), “Testing for Unit Roots in Autoregressive Moving Average Model for Unknown Order,” Biometrika, pp. 599–608.
31.Wright, J. H. (2000), “Alternative Variance-Ratio Tests Using Ranks and Signs,” Journal of Business and Economic Statistics, Vol. 18, pp. 1–9.