跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭慎元
研究生(外文):Sheng-Yuan Cheng
論文名稱:低耗電高速低雜訊PFDCPSC鎖相迴路之設計
論文名稱(外文):The Design of Low-Power High-Speed Low-Noise PFD_CP_SC_PLL
指導教授:余繁
指導教授(外文):Fun Ye
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:103
中文關鍵詞:PFD_CP_SC式相角鎖相迴路接收器相位偵測器迴路過濾器電流饑渴式電壓控制振盪器D式正反器除法器.
外文關鍵詞:PFD_CP_SC_PLLReceiverPhase-DetectorLoop-FilterSource-Couple VCOD-flip flopDivider
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低耗電高速低雜訊無線PLL 積體電路為近年來業界所發展的主要產品之一. 它的市場很大所以引起了各家廠商的投入., 所以它的規格要求可以說是要求很高. 不但要低耗電, 以維持長的電池使用時間及待機時間比其他廠商來得長; 也要求高速的下載速度及上載速度. 以提供更佳的文字或圖形傳送, 甚至是音樂資料或影片檔案的下載.
本文PFDCPSCPLL 可達4 Giga Hz, 1.47E-02 Watts, and 6.9E-19 SQ V/HZ使用了Phase Frequency Detector, Chare Pump Filter, Source Couple VCO 和 N Divider, 提供了完整低耗電高速低雜訊PFDCPSCPLL 設計的要點及大綱, 讓通訊積體電路或系統的設計者有一參考文獻.
The Low-Power High-Speed Low-Noise PLL is a significant circuit for portable consumer devices. There are many sorts of PLLs due to its huge market demand. Its main applications are portable phones and GPS devices. It requires low-power for allowing the battery has long-used time. Also it demands fast-download speed for text transmission or graphic transmission. Furthermore, it needs low-noise quality to assure excellent sound received quality.

PFD_CP_SC_PLL can reach 4 Giga Hz, 1.47E-02 Watts, and 6.9E-19 SQ V/HZ composed by a Phase Frequency Detector, a Chare Pump Filter, a Source Couple VCO and a 64 Divider. This thesis offers a complete low-power, high-speed, and low-noise PFDCPSC PLL design concept and detailed circuits, allowing communication designers to have a great reference.
Table of Contents

Chinese Abstract………………………………………………………………II
English Abstract……… ……………… III
List of Figures…………………………………………………… VII
List of Tables………………………………………………………IX
List of Appendix………………………………………………… X

Chapter 1 General Theory of Phase Locked Loop………………………………………….1
1.1 Architecture of PLL ……………………………………………………………………3
1.2 The Phase Detector …………………………………………………………………….4
1.3 The Loop Filter …………………………………………………………………………9
1.4 The Voltage Controlled Oscillator …………………………………………………….12
1.5 What PFDCPSC PLL for ……………………………………………………………..15
1.6 Why PFDCPSC PLL ………………………………………………………………….16

Chapter 2 Design of Low Power High Speed Low Noise PFD_CP_SC_PLL …………..17
2.1 A system Noise Perspective ………………………………………………………......21
2.2 The PFD ………………………………………………………………………………23
2.3 The Charge Pump and the Loop Filter ……………………………………………….32
2.4 The Source Coupled Voltage Controlled Oscillator …………………………………37
2.5 64 Frequency Divider & Clock Synthesizer …………………………………………42

Chapter 3 Pspice Simulation ……………………………………………………..………45
3.1 High Speed Simulation ……………………………………………………..………46
3.2 Low Power Simulation ………………………………………………………………..47
3.3 Low Noise Simulation ………………………………………………………………...48
3.4 The CIR(NET) Files …………………………………………………………………..51
3.5 Small Signal Bias Analysis …………………………………………………………...53
3.6 PLL Verilog Core Program …………………………………………………………...55
3.7 Transfer Function ……………………………………………………………………..56

Chapter 4 Conclusion …………………………………………………………………….57

Reference List……………………………………………………………………………..58
Appendix A: PLL Verilog core program…………………………………………………..60
Appendix B: Noise analysis by AC sweep at 4G Hz……….……………………………..75
Appendix C: The detail noise analysis of 150% VCO W…………..……………………..84
Appendix D: The CIR(NET) file..…………………………………..……………………..92
List of Figures
Figure 1. Block Diagram of PLL ………………………………………………………….3
Figure 2.The waveform of XOR PLL is below. ………….………………………………..5
Figure 3. The PFD schematic ………………………………………………………………7
Figure 4. PFD working waveform …………………………………………………………8
Figure 5. Tri-State Loop filter ……………………………………………………………...9
Figure 6.Charg pump loop filter …………………………………………………………..10
Figure7.Current Starved VCO …………………… ……………………………………...13
Figure 8. Source Coupled VCO schematic ……………………………………………….14
Figure 9. PFDCPSC PLL Model Schematic & Hierarchy Level Map ……………………17
Figure 10. MOSFET model parameters …………………………………………………..19
Figure 11. Brief noise analysis by AC sweep at 4G Hz…………………..……………….22
Figure 12. PFD schematic ………………………………………………………………...24
Figure 13. 2 port NAND gate……………………………………………………………..25
Figure 14. Three port NAND gate…………………………………………………………25
Figure 15. Four port NAND gate …………………………………………………………26
Figure 16. The CMOS Inverter …………………………………………………………...27
Figure 17 Lock time schematic from 2GHZ to 4GHZ…………………………………….28
Figure 18. Lock time for 2GHZ to 4GHZ ……………………………………………..….29
Figure 19.(A) Schematic of the PFD_PLL transferring from 3.3G HZ to 4G HZ ….……30
Figure 19.(B) Waveform of the PFD_PLL transferring from 3.3G HZ to 4G HZ…….…..31
Figure 20(A). CP Loop filter symbolic ……………………………………………..…..33
Figure 20(B)..Charge Pump Filter loop Schematic………………………………………33
Figure 21. CP filter current at 4G HZ ……………………………………………………35
Figure 22. CP_Filter input and output simulation at 4G HZ …….………………………36
Figure 23. Source Coupled VCO schematic ……………………………………………...37
Figure 24(A). The CP filter output voltage 4.859 V at 4 GHZ……..…………………….38
Figure 24(B). CP filter output voltage 4.858 V at 2 GHZ…………………………………39
Figure 25. the M15 current, 230uA, is nearly double of M18 current,…………….……...40
Figure 26(A). Input and output voltage of VCO from 4GHZ to 4GHZ ………….….……40
Figure 26(B). Input and output voltage of VCO from 3GHZ to 4GHZ……….………….41
Figure 26(C). Input and output voltage of VCO from 2GHZ to 4GHZ…….…….…….41
Figure 27. D flip-flop ………………………………………………..…………………..42
Figure 28. 64 Frequency Divider & Clock Synthesizer ………………..………………...43
Figure 29. The PLL output signal at 4GHZ. From 3.5GHZ ………….….……………….46
Figure 30.The VCO’s schematic Wp*1.5, Wn*1.5 …………………………………….49
Figure 31. The brief noise analysis of 150% VCO W……………………………..………50
Figure 32. The PFD Nand4 CIR(NET) file …………………..………..…………………52
Figure 33. Verilog sample program by module …………..………………………………55
Figure 34. The phase transfer function performance …………………………………….56
List of Tables
Table 1. PFDCPSC PLL Specification …………………………………………………. 45
Table 2. PLL voltage source’s current and total power consumption ……………………47
Table 3. The noise result and comparison ………………………………………………..49
List of Appendix
Appendix A:PLL Verilog core program……..……………………………………………60
Appendix B: Noise analysis by AC sweep at 4G Hz……….……………………………..75
Appendix C: The detail noise analysis of 150% VCO W…………..……………………..84
Appendix D: The CIR(NET) file……….…………………………..……………………..92
[1] Jack Lee, STLC 1502 VoIP processor, Alfa publisher, France, pp. 20-55, Apr. 2003. .
[2] Daniel Minoli & Emma Minoli, Delivering Voice over IP networks, Wiley Publishing Inc, USA, pp. 22-44, Sep. 2002.
[3] Baker&Li&Boyce, CMOS Circuit Designs Layout, And Simulation, Wiley Interscience, USA, pp. 371-424, June, 2002.
[4] Young, I.A., Greason, J.K, and Wong, K.L., “A PLL clock generator with 5 to 110MHz of lock range for microprocessors,” IEEE JSSC, vol.27, no.11, pp.1599-1607, Nov.1992.
[5] Mark G. Johnson, Edwin L. Hudson, “A variable delay line PLL for CPU-coprocessor synchronization,”, IEEE JSSC, vol.23, no.5, pp. 1218-1223, Oct. 1988
[6] Garth Nash, “Phase Lock Loop Design Fundamentials,” Motorola Inc. Semiconductor Application Note, 1994
[7] Arun Mansukhani, “Phase Lock Loop Stability Analysis,” Motorola Inc. Applied Microwave & Wireless note, 2000
[8] W. O. Keese, “An Analysis And Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops:, National Semiconductor Application Note 1001, May 1996
[9] Roland E. Best, “Phase Locked Loops Design, Simulation, and Applications”, McGraw-Hill, 1999
[10] F. M. Gardner, ”Charge-pump phase-lock loops,” IEEE Trans. Comm., vol. COM-28, pp.1849-1858,Nov.1980.
[11] Wen Ren Shen, “ The analysis and design of all-digital Phase Locked Loop,” MS thesis, National Chiao Tung University, Department of Electrical Engineering, July 2001
[12] Shao Ji chen, “ Investigation and Design of All-Digital Phase Locked Loop,” MS thesis, National Chiao Tung University, Department of Electrical Engineering, July 2002
[13] Jim Dunning, Gerald Garcia, Jim Lundberg, and Ed Nuckolls, “An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance Microprocessors,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 4, April 1995
[14] L. John and Stensby, Phase-Locked Loops: Theory and Application. Boca Raton Fla: CRC Press, 1997.
[15] R.E. Best, Phase-locked loops: design, simulation, and applications. McGraw-Hill, New York, NY 1997.
[16] B. Razavi, ed., Monlithic Phase Locked Loop. IEEE Press, Piscataway, NJ 1996.
[17] D. Johns and K. Martin, Analog Integrated Circuits Design, John Wiley & Sons, New York, NY 1997.
[18] R. J. Baker, H. W. Li, and D. Boyce, CMOS: Circuit Design, Layout, and Simulation. IEEE Press, Piscataway, NJ1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林菁(1999)。從資源本位學習談學校資源中心之設立。研習資訊,16(1),36-48。
2. 林美和(1996)。資訊素養與終身學習的關係。社教雙月刊,73,7-12。
3. 林奇賢(1998)。網路學習環境的設計與應用。資訊與教育雜誌,67,34-49。
4. 阮枝賢(2000)。網路教學的設計。文教新潮,5(2),20-24。
5. 吳清基、蘇進棻(2001)。新世紀的教育展望。研習資訊,18(2),1-5。
6. 吳明德、陳世娟、謝孟君(2005)。小學教師網際網路教學資源尋求及使用行為之研究。教育資料與圖書館學,42(4),481-498。
7. 何榮桂(1999)。資訊教育基礎建設與中小學資訊化校園的藍圖。資訊與教育雜誌,68,1。
8. 呂慧君(2002)。二十一世紀新教育-網路學習。北縣教育,41,61-63。
9. 李昆翰(1999)。小學的資訊素養教育。研習資訊,16(5),12-24。
10. 李宗薇(1997)。教學科技觀點的轉折對社會科教學的影響。教學科技與媒體,32,3-13。
11. 李世忠(1992)。從電腦教學到超(串連)媒體。教育資料集刊,17,303-326。
12. 朱則剛(1997)。教學資源服務在社會科教學的重要性。教學科技與媒體,32,31~38。
13. 尹玫君(2000)。國小老師的網路教學素養與培育。資訊與教育,79,13-19。
14. 王智玄(2000)。新的學習策略-網路合作式學習之探討。資訊與教育,78,42-50。
15. 王佩蓮(2001)。資訊融入自然與科技領域教學。教師天地,112,59-64。