|
[1] R. P. Feynman, “There’s Plenty of Room at the Bo ttom,” Journal of Microelectromechanical Systems,Vol. 1, No. 1, pp. 60-66, March 1992. [2] J. S. Kilby, “Miniaturized electronic Circuits,” U. S. Patent 3,138,743, June 23, 1964 (field February 6, 1959). [3] R. N. Noyce, “Semiconductor Device-and-Lead Structure,” U. S. Patent 2,918,877, April 25, 1961 (field July 30, 1959). [4] R. P. Feynman, “Infinitesimal Machinery,” Journal of Microelectromechanic- al Systems, Vol. 2, No. 1, pp. 4-14, March 1993. [5] S. Fatikow and U. Rembold, “Microsystem Technology and Microrobotics,” Springer, 1996. [6] L. J. Yang. “Recognize the Micro-electro-mechanical Systems (MEMS),” Tsang-Hai, Taichung, Taiwan, pp. 95, 2001. (Chinese version) [7] Council for Economic Planning and Development, “Challenge 2008 ─ Council for Economic Planning and Development,” http://www.cepd.gov.tw/business/businesssec2.jsp?parentLinkID=7&linked=146, 2003. [8] G.. T. A. Kovacs, “Micromachined Transducers Source Book,” McGraw-Hill, Washington D.C., pp.839, 2000. [9] Y. N. Huang, “Fabrication and Test of Silicon Micro Heat Pipe,” Master thesis,Tamkang University, Taiwan, 1999. (Chinese version) [10] S. W. Kang and D. L. Huang, “Fabrication of Star Grooves and Rhombus Grooves Micro Heat Pipe,” Journal of Micromechanics and Microengineering, Vol. 12, No. 5, pp 525-531, 2002. [11] S. W. Kang, S. H Tsai and H. C. Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes,” Applied Thermal Engineering, Vol. 22, pp. 1559-1568, 2002. [12] C. C. Hsu, S. W. Kang and D. F. Hou, “Performance Testing of Micro Loop Heat Pipes,” Tamkang Journal of Science and Engineering, 8, pp. 123-132, 2005. [13] C. C. Hsu, “Application of Nanafluids in Fabrication of Micro Loop Heat Pipe,” Master thesis, Tamkang University, Taiwan, 2004. (Chinese version) [14] G. P. Peterson, “An Introduction to Heat Pipes,” John Wiley & Sons, 1994. [15] http://www.npowertek.com/what.html [16] J. E. Bryan and J. Seyed-Yagoobi, “Heat Transport Enhancement of Monogroove Heat Pipe with Electrohydrodynamic Pumping,” American Society of Mechanical Engineers, Heat Transfer Division, HTD 327 , pp. 131-138, 1996, or Journal of Thermophysics and Heat Transfer, 11, pp. 454-460, 1997. [17] J. Darabi, M. M. Ohadi and D. DeVoe, “An Electrohydrodynamic Polarization Micropump for Electronic Cooling,” Journal of Microelectromechanical System, Vol. 10, No. 1, pp. 98-106, 2001. [18] S. V. Garimella, V. Singhal and D. Liu, “On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps,” Proceedings of The IEEE, Vol. 94, No. 8, pp. 1534-1548, 2006. [19] V. Singhal and S. V. Garimella, “Induction Electrohydrodynamics Micropump for High Heat Flux Cooling,” Sensors and Actuators A: Physical, 134, pp. 650-659, 2007. [20] D. J. Laser and J. G. Santiago, “A Review of Micropumps,” Journal of Micromechanics and Microengineering, 14, pp. R35-R64, 2004. [21] P. Woias, “Micropumps-Past, Progress and Future Prospects,” Sensors and Actuators B: Chemical, 105, pp. 28-38, 2005. [22] W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An Electronically Controlled Pizeoelectric Insulin Pump And Valves,” IEEE Transactions on Sonics and Ultrasonics, 25, pp. 153-156, 1978. [23] J. G. Smits, “Pizeoelectric Micropump with Three Valves Working Peristaltically,” Sensors and Actuators A: Physical, 21-23, pp. 203-206, 1990. [24] S. C. Jacoboson, R. Hergenroder, L. B. Koutny and J. M. Ramsey, “Open-Channel Electrochromatograph on A Microchip,” Analytical Chemistry, 66, pp. 2369-2373, 1994. [25] R. S. Ramsey and J. M. Ramsey, “Generating Electrospray from Microchip Devices Using Electroosmotic Pumping,” Analytical Chemistry, 69, pp. 1174-1178, 1997. [26] S. L. Zeng, C. H. Chen, J. C. Mikkelsen and J. G. Santiago, “Fabrication And Characterization of Electroosmotic Micropumps,” Sensors and Actuators B: Chemical, 79, pp. 107-114, 2001. [27] C. H. Chen and J. G. Santiago, “A planar Electroosmotic Micropump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp.672-683, 2002. [28] J. Jang and S. S. Lee, “Theoretical and Experimental Study of MHD (Magnetohydrodynamic) Micropump,” Sensors and Actuators A: Physical, 80, pp.84-89, 2000. [29] J. Zhong, M. Yi and H. H. Bau, “Magneto Hydrodynamic (MHD) Pump Fabricated with Ceramic Tapes,” Sensors and Actuators A: Physical, 96, pp. 59-66, 2002. [30] A. V. Lemoff and A. P. Lee, “AC Magnetohydrodynamic Micropump,” Sensors and Actuators B: Chemical, 63, pp. 178-185, 2000. [31] S. F. Bart, L. S. Tavrow, M. Mehregany and J. H. Lang, “Microfabricated Electrohydrodynamic Pumps,” Sensors and Actuators A: Physical, 21-23, pp. 193-197, 1990. [32] G. Fuhr, T. Schnelle and B. Wangner, “Travelling Wave-Driven Microfabricated Electrohydrodynamic Pumps for Liquids,” Journal of Micromechanics and Microengineering, 4, pp. 217-226, 1994. [33] O. M. Stuetzer, “Ion Drag Pressure Generation,” Journal of Applied Physics, Vol. 30, No. 7, pp.984-994, 1959. [34] O. M. Stuetzer, “Ion Drag Pumps,” Journal of Applied Physics, Vol. 31, No. 1, pp.136-146, 1960. [35] W. F. Pickard, “Ion Drag Pumping. Ⅰ. Theory,” Journal of Applied Physics, Vol. 34, No. 2, pp. 246-250, 1963. [36] W. F. Pickard, “Ion Drag Pumping. Ⅱ. Experiment,” Journal of Applied Physics, Vol. 34, No. 2, pp. 251-258, 1963. [37] A. Richter, A. Plettner, K. A. Hofmann and S. Sandmaier, “A Micromachined Electrohydrodynamic (EHD) Pump,” Sensors and Actuators A: Physical, 29, pp. 159-168, 1991. [38] A. Furuya, F. Shimokawa, T. Matsuura and R. Sawada, “Fabrication of Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive Ion Etching (MC-RIE) and Their Application to an Ion Drag Integrated Micropump,” Journal of Micromechanics and Microengineering, 6, pp. 310-319, 1996. [39] S. H. Ahn and Y. K. Kim, “Fabrication and Experiment of a Planar Micro Ion Drag Pimp,” Sensors and Actuators A: Physical, 70, pp. 1-5, 1998. [40] L. J. Yang, “The Report of Study Microelectromachanical (MEMS) Technology in California Institute of Technology (Caltech), USA,” Project No. NSC89-2217-E-032-001, 2001. (Chinese version) [41] J. Darabi, M. Rada, M. Ohadi and J. Lawler, “Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 684-690, 2002. [42] J. Darabi and H. Wang, “Development of an Electrohydrodynamic Injection Micropump and Its Potential Application in Pumping Fluids in Cryogenic Cooling System,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, pp. 747-755, 2006. [43] I. Kano and I. Takahashi, “Improvement for Pressure Performance of Micro-EHD Pump with an Arrangement of Thin Cylindrical Electrodes,” JSME International Journal, Series B: Fluids and Thermal Engineering, Vol. 49, No. 3, pp. 748-754, 2006. [44] J. M. Crowley, G. S. Wright and J. C. Chato, “Selecting a Working Fluid to Increase the Efficiency and Flow Rate of an EHD pump,” IEEE Transactions on Industry Applications, Vol. 26, No. 1, pp. 42-49, 1990. [45] J. Darabi and C. Rhodes, “CFD Modeling of an Ion-Drag Micropump,” Sensors and Actuators A: Physical, 127, pp. 94-103, 2006. [46] P. A.Vézquez, G. E.Georghiou and A.Castellanos, “Characterization of Injection Instabilities in Electrohydrodynamics by Numerical Modelling: Comparison of Particle in Cell and Flux Corrected Transport Methods for Electroconvection between Two Plates,” Journal of Physics D: Applied Physics, 39, pp. 2754-2763, 2006. [47] Gem Teah Optoelectronics Corporation, http://www.gem-tech.com.tw. [48] Y. L. Huang, “The Fabrication of Electrohydrodynamic Micro Pump,” Master thesis, Tamkang University, Taiwan, 2002. (Chinese version) [49] R. A. Alberty and F. Daniels, “Physical Chemistry,” John Wiley & Sons, New York,1978. [50] M. Madou, “Fundamentals of Microfabrication,” CRC, Washington DC, 1997. [51] M. Watanabe, J. Zheng, A. Hara, H. Shirai and T. Hirai, “A Pumping Technique Using Electrohydrodynamic Flow inside a Gel,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 1, pp. 181-185, 2003. [52] C. Xu, W. Lemon and C. Lui, “Design and Fabrication of A High-Density Metal Microelectrode Array for Neural Recording,” Sensors and Actuators A: Physical, 96, pp. 78-85, 2002. [53] T. J. Yao, X. Yang and Y. C. Tai, “BrF3 Dry Release Technology for Large Freestanding Parylene Microstructures and Electrostatic Actuators,” Sensors and Actuators A: Physical, 97-98, pp. 771-775, 2002. [54] L. J. Yang, W. Z. Lin, T. J. Yao and Y. C. Tai, “Photo-Patternable Gelatin as Protection Layers in Surface Micromachinings,” Sensors and Actuators A: Physical, 103, pp. 284-290, 2003. [55] http://www.scsalpha.com/ [56] http://www.paryleneengineering.com/ [57] J. Noordegraaf and H. Hull, “C-Shield Parylene Allows Major Weight Saving for EM Shielding of Microelectronics,” Proceeding of The First IEEE International Symposium on Polymeric Packaging, pp. 190-196, 1997. [58] H. H. Lin, “The Thermo-Buckled Type Actuators Fabricated by Parylene MEMS Technology,” Master thesis, Tamkang University, Taiwan, 2005. (Chinese version) [59] http://www.gelatin.com/ [60] J. E. Jolley, “Microstructure of Photographic Gelatin Binders,” Photographic Science and Emgineering, Vol. 14, pp. 169-177, 1970. [61] L. C. Cha, “Preparation of Dicheomated Gelatin Film for Hologram,” Master thesis, Yuan Ze University, Taiwan, 1995. (Chinese version) [62] P. C. Yang, “A New Packaging Method for Pressure Sensors by PDMS MEMS Technology,” Master thesis, Tamkang University, Taiwan, 2005. (Chinese version) [63] G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck andG. M. Whitesides, “Monolayers on Disordered Substrates: Self- Assembly of Alkyltrichlorosilanes on Surface-Modified Polyethylene and Poly(dimethylsiloxane),” Macromolecules, 26, pp. 5870-5875, 1993. [64] P. C. Hidber, P. F. Nealey, W. Helbig and “New Strategy for Controlling the Size and Shape of Metallic Features Formed by Electroless Deposition of Copper: Microcontact Printing of Catalysts on Oriented Polymers, Followed by Thermal Shrinkage,” Langmuir, 12, pp. 5209-5215, 1996. [65] N. Bowden, A. Terfort, J. Carbeck and G. M. Whitesides, “Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays,” Science, Vol. 276, pp. 233-235, 1997. [66] D. C. Duffy, J. C. McDonald, O. J. A. Schueller and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Analytical Chemistry, 70, pp. 4974-4984, 1998. [67] D. C Duffy, O. J. A. Schueller, S. T. Brittain and G. M. Whitesides, “Rapid Prototyping of Microfluidic Switches in Poly(dimethylsiloxane) and Their Actuation by Electro-Osmotic Flow,” Journal of Micromechanics and Microengineering, 9, pp. 211-217, 1999. [68] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller and G. M. Whitesides, “Fabrication of Microfluidic Systems in Poly(dimethylsiloxane),” Electrophoresis, 21, pp. 27-40, 2000. [69] A. Sze, D. Erickson, L. Ren and D. Li, “Zeta-Potential Measurement Using The Smoluchowski Equation and The Slop of The Current-Time Relationship in Electroosmosis Flow,” Journal of Colloid and Interface Science, Vol. 261, pp. 402-410, 2003. [70] J. P. Cheng, X. Zhang, J. Tu, X. Tao, Y. Ye and F. Liu, “Catalytic Chemical Vapor Deposition Synthesis of Helical Carbon Nanotubes and Triple Helices Carbon Nanostructure,” Materials Chemistry and Physics, 95, 12-15, 2006. [71] X. Y. Kong and Z. L. Wang, “Spontaneous Polarization Induced Growth of ZnO Nanostructures,” Proceeding of International Conferenc on Solid-State and Integrated Circuits Technology Proceedings, ICSICT 2, pp. 894-897, 2004. [72] S. Matsui, “Three-Dimensional Nanostructure Fabrication by Focus-Ion-Beam Chemical Vapor Deposition,” Proceeding of International Conference on Solid-State Sensors, Actuators and Microsystems (Traansducers’03), 1, pp. 179-181, 2003. [73] D. J. Bell, Y. Sun, L. Zhang, L. X. Dong, B. J. Nelson and D. Grützmacher, “Three-Dimensional Nanosprings for Electromechanical Sensors,” Proceeding of International Conference on Solid-State Sensors, Actuators and Microsystems (Traansducers’05), 1, pp. 15-18, 2005. [74] L. Xia, W. Wu, J. Xu, Y. Hao and Y. Wang, “3D Nanohelix Fabrication and 3D Nanometer Assembly by Focused Ion Beam Stress-Introducing Technique,” Proceeding of Fourteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’06), pp. 118-121, 2006. [75] T. Mineta, M. Abe, H. Kubo, E. Makino and T. Shibata, “Fabrication of 3D Micro Structures from Evaporated Thin Film Tube,” Proceeding of ICEE/APCOT’04, pp 322-325, 2004. [76] L.-J. Yang, Y.-T. Chen, S.-W. Kang and Y.-C. Wang, “Fabrication of SU-8 Embedded Microchannels with Circular Cross-section,” International Journal of Machine Tools and Manufacture, 44, 1109-1114, 2004. [77] K. C. Ko, “Fabrication and Application of Embedded Spiral Electrodes,” Master thesis, Tamkang University, Taiwan, 2006. (Chinese version) [78] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi and T. Sakurai, “Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes,” Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12321-12325, 2005. [79] E. Smela, “Conjugated Polymer Actuators for biomedical Applications,” Advanced Materials, 15, pp. 481-494, 2005. [80] H. Fujita, “Two Decades of MEMS from Surprise to Enterprise,” Proceeding of Twenty IEEE International Conference on Micro Electro Mechanical Systems (MEMS’07), pp. 1-6, 2007. [81] C. P. Chen, Y. C. Chao, C.Y. Wu and J.C. Lee, “Development of a Catalytic Hydrogen Micro-Propulsion System,” Combustion Science and Technology, 178, pp. 2039-2060, 2006. [82] L. F. Velásquez-García, A. I. Akinwande and M. Martínez–Sánchez, “A Planar Array of Micro-Fabricated Electrospray Emitters for Thruster Applications,” Journal of Microelectromechanical Systems, 15, pp. 1272-1280, 2006. [83] J. H. Lee, K. S. Hwang, K. H. Yoon, T. S. Kim and A. Ahn, “Microstructure and Adhesion of Au Deposited on Parylene-C Substrate with Surface Modification for Potential Immunoassay Application,” IEEE Transactions on Plasma Science, Vol. 32, pp. 505-509, 2004. [84] http://www.chine.com.tw/
|