跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家賓
研究生(外文):Chia-Pin Chang
論文名稱:鈦基植體表面網狀奈米多孔性結構對應力遮蔽效應之影響研究
論文名稱(外文):Research of Stress Shielding Effect on Titanium-Based Alloy Implants with Multi-Nanostructure
指導教授:歐耿良
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:77
中文關鍵詞:鈦基金屬生物相容性應力遮蔽效應電化學奈米網狀多孔性二氧化鈦
外文關鍵詞:Titanium-Based Alloybiocompatibilitystress shielding effectelectrochemical treatmentsmulti-nanoporous titania film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
諸多研究顯示,鈦基金屬及其合金於人體的生物相容性(biocompatibility)有極高的評價,其非常適合做為人體的植入物,然而鈦金屬及其合金之所以具極佳的生物相容性主要是與鈦金屬表面的氧化層有關,研究指出植體表面氧化層厚度與孔徑大小對於細胞初始的攀附行為、增殖及分化有密切的關係。但因鈦金屬植體表面之機械性質與原生骨組織仍有差異,導致植體植入後可能發生因應力遮蔽效應所產生的骨質吸收問題。若能於植體表面氧化層製作奈米網狀多孔性結構,除將有助於細胞攀附、增殖及分化外,亦可有效降低鈦植體表面之楊氏係數,避免應力遮蔽效應發生,達到更趨完善的骨整合效應。於文獻指出多孔性氧化層結構可有效降低鈦金屬表面之楊氏係數,因此,本研究以電化學陰極處理方式使鈦基金屬表層形成一層氫化鈦(TiH2)薄膜,再以電化學陽極處理,使表面形成一層網狀奈米多孔性的二氧化鈦(TiO2)結構,並以一些物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構,進一步探討奈米網狀多孔性的二氧化鈦的形成對鈦金屬表面楊氏係數及應力遮蔽效應的影響。
Metals are becoming increasingly popular as surgical implants in the cardiovascular, neurosurgery, maxillofacial, orthopedic and dental fields by many researches. They are due to their excellent biocompatibility and mechanical properties. However, there is particular difference in the Young’s modulus between artificial implants and human bones. The difference of Young’s modulus will result in stress shielding effect, leading to early bone loss. As mentioned above, the surface characteristics of the implant, such as pore sizes/roughness, oxide thickness are related to initial cell behaviors and enhancing osseointegration. It can be good for osseointegration if the implant can effectively keep the oxidation layer with nanoporousity and increasing oxide thickness. Based on the present study, in order to gain the thick oxidation and the nanoporous structure, the titanium hydride is the main factor in forming thick nanoporous oxide layer. The present electrochemical process was performed as surface treatment of titanium-based implant. Titanium hydrides were formed on implant surface following cathodic treatment. Nanoporous titanium oxide structure was formed by anodic surface treatment. As the mentioned above, physical properties, chemical properties as well as biocompatibility of titanium implant with and without electrochemical treatments were analyzed clearly. Furthermore, effect of mechanical properties and stress shielding on nanoporous implant surface and bone were also investigated and discussed.
This research explores the effects of nano-(??-TiH, g-TiH2, and a-TiH1.971) phases on the formation of multi-nano-titania film by anodization with cathodic pretreatment. Nano-titanium hydrides and sub-stoichiometric nano-titanium hydrides were formed following cathodization. A multi-nanoporous titania film was formed on the titanium after anodization. The nano-hydrides are directly changed to multi-nanoporous titania film by a dissolution reaction after anodization. Anodization with cathodic pretreatment not only yields a titanium surface with a multi-nanostructure, but also transforms the titanium surface into a nanostructured titania surface. Formation of nano-hydrides by cathodization and oxidation by anodization are believed to enhance biocompatibility and improve bone to interface contact (BIC), thereby accelerate the initial osseointegration and re-osseointegration.
Contents
Contents…………………………………………………………………1
Table captions…………………………………………………………3
Figure captions………………………………………………………4
中文摘要…………………………………………………………………6
Abstract…………………………………………………………………7
Chapter 1 Introduction………………………………………………9
1.1 General background………………………………………………9
1.2 Motivation of this study……………………………………10
1.3 Purpose of this study…………………………………………11
1.4 Hypothesis of this study……………………………………11
1.5 Organization of the thesis…………………………………12
Chapter 2 Literature Review………………………………………13
2.1 Property of titanium-base alloys…………………………13
2.2 Osseointegration of titanium implants……………………14
2.3 Osseointegration of titanium oxide layer property……15
2.4 Contact of boneimplant with and without surface treatment………………………………………………………………16
2.5 Stress shielding between the implant and bone…………17
Chapter 3 Theoretical design……………………………………22
Chapter 4 Experimental Procedure………………………………32
4.1 Titanium implant preparation………………………………32
4.2 Physical and chemical properties of dental implant with and without treatments……………………………33
Chapter 5 Results and discussion………………………………39
5.1 Properties of titanium with and without treatments…39
5.2 Formation mechanism of nanoporous titanium oxide surface…………………………………………………………………44
5.3 Fracture mechanism of nanoporous titanium oxide surface…………………………………………………………………47
Conclusion……………………………………………………………50
Reference………………………………………………………………51

Table captions
Table 4.1 General chemical composition of titanium metals…………………………………………………………………55
Table 4.2 Mechanical and physical properties of titanium metal (ASTM)…………………………………………………………56

Figure captions
Figure 3.1 Biaxial stress in a thin film deposited on a rigid substrate………………………………………………………28
Figure 3.2 Cross-sectional view of a thin film under compression on a bent substrate………………………………………29
Figure 3.3 The curvature of Si wafer measured by laser beam, which R is the curvature radius and D is the laser beam displacement……………………………………………………30
Figure 3.4 A schematic diagram showing the stress distribution in film and substrate and the corresponding forces and bending moments……………………31
Figure 4.1 Experimental procedures……………………………57
Figure 4.2 Energy Dispersive X-ray Spectroscopy (EDXS)…………………………………………………………………………58
Figure 4.3 Dynamic Mechanical Thermal Analysis (DMA)…………………………………………………………………………59
Figure 4.4 Grazing-Incidence X-ray Diffraction (GIXRD)…………………………………………………………………………60
Figure 4.5 Transmission electron microscope (TEM)…………………………………………………………………………61
Figure 4.6 X-ray Photoelectron Spectroscopy (XPS)…………………………………………………………………………62
Figure 4.7 Field-emission scanning electron microscope (FE-SEM)……………………………………………………………………63
Figure 4.8 Atomic Force Microscope (AFM)……………………64
Figure 4.9 Secondary ion mass spectrometry (SIMS)…………………………………………………………………………65
Figure 4.10 Auger electron spectroscope (AES)……………66
Figure 5.1 GIXRD spectra of M-Ti, P-Ti and C-Ti……………67
Figure 5.2(a) TEM micrographs of C-Ti…………………………68
Figure 5.2(b) TEM micrographs of AC-Ti………………………69
Figure 5.3 XPS depth profiles of M-Ti, P-Ti, C-Ti and AC-Ti………………………………………………………………………70
Figure 5.4(a) Surface morphology of M-Ti……………………71
Figure 5.4(b) Surface morphology of A-Ti……………………72
Figure 5.4(c) Surface morphology of Ti treated following anodization with cathodic preatment……………………………73
Figure 5.5 Surface morphology of the titanium with and without electrochemical treatments……………………………74
Figure 5.6 Surface mechanical properties of implant following treatments………………………………………………75
Figure 5.7(a) Implant surface following the remove torque orientation(without anodization following cathodization)…………………………………………………………………………76
Figure 5.7(b) Implant surface following the remove torque orientation(with anodization following cathodization)…………………………………………………………………………77
Reference
1.Friberg, B., Grondahl, K., Lekholm, U. & Branemark, P. I. Long-term follow-up of severely atrophic edentulous mandibles reconstructed with short Branemark implants. Clin Implant Dent Relat Res 2, 184-9 (2000).
2.Kasemo, B. & Lausmaa, J. Aspect of surface physics on titanium implants. Swed Dent J, 28, 19 (1983).
3.Kim, H. M., Kokubo, T., Fujibayashi, S., Nishiguchi, S. & Nakamura, T. Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 52, 553-7 (2000).
4.Tanaka, S., Aonuma, M., Hirose, N. & Tanakib, T. The preparation of porous TiO2 by immersing Ti in NaOH solution. J. Electrochem. Soc, 149, 167 (2002).
5.Tanaka, S., Aonuma, M., Hirose, N. & Tanakib, T. Effect of Hydrogen on the Formation of Porous TiO2 in Alkaline Solution. J. Electrochem. Soc, 149, 186 (2002).
6.Schutz, R. W. & Covington, L. C. Effect of Oxide Films on the Corrosion Resistance of Titanium. Corrosion, 37, 585-591 (1981).
7.Schutz, R. W. Materials performance, 30, 58 (1991).
8.Brånemark, P., Breine, U., Adell, R. & Hansson, B. Intraosseous anchorage of dental prostheses. I Experimental studies. Scand J Plast Reconstr Surg, 3, 81 (1969).
9.Schroeder, A., Pohler, O. & Sutter, F. Gewebsreaktion auf ein Titan-Hohlzylinderim-plantat mit Titan-Spritz schichtoberflache. Schweiz Monatsschr Zahnheilk, 86, 713 (1976).
10.Branemark, P. I. et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16, 1-132 (1977).
11.Schroeder, A., Stich, H., Straumann, F. & Sutter, F. Uber die Anlagerung von Osteozement an einen belasteten Implantatkorper. Schweiz Monatsschr Zahnheilk, 88, 1051 (1978).
12.Schroeder, A., Van der Zypen, E., Stich, H. & Sutter, F. The reaction of bone, connective tissue and epithelium to endosteal implants with sprayed titanium surface. J. Maxillofac Surg, 9, 15 (1981).
13.Buser, D., Weber, H. & Lang, N. Tissue integration of non-submerged implants 1-year results of a progressive study with 100 ITI hollow-screw and hollow-cylinder implants. Clin Oral Impl Res, 1, 33 (1990).
14.Buser, D., Sutter, F., Weber, H., Belser, U. & Schroeder, A. The ITI dental implant system. Basics, clinical indications and procedures, results. In: Hardin J Clark’s Clinical Dentitry, Philadelphia: Lippincott, 5, 1 (1992).
15.Zarb, G. A. & Schmitt, A. The longitudinal clinical effectiveness of osseointegrated dental implants in anterior partially edentulous patients. Int J Prosthodont 6, 180-8 (1993).
16.Adell, R., Lekholm, U., Rockler, B. & Branemark, P. I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10, 387-416 (1981).
17.Brunette, D. M., Kenner, G. S. & Gould, T. R. Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res 62, 1045-8 (1983).
18.Chehroudi, B., Gould, T. R. & Brunette, D. M. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res 24, 1203-19 (1990).
19.Martin, J. & Schwartz, Z. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J Biomed Mater Res, 29, 389 (1995).
20.Wong, M., Eulenberger, J. & Schenk, R. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 29, 1567 (1995).
21.Schwartz, Z. et al. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30, 145-55 (1996).
22.Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L. & Nealey, P. F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573-88 (1999).
23.Deligianni, D. D., Katsala, N. D., Koutsoukos, P. G. & Missirlis, Y. F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22, 87-96 (2001).
24.Deligianni, D. D. et al. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22, 1241-51 (2001).
25.Steinemenn, S., Eulenberger, J., Maeusli, P. & Schroeder, A. Adhesion of bone to titanium. Biomechanical Performance of Biomaterials, 409 (1986).
26.Brånemark, R. A Biomechanical Study of Osseointegration. Goteborg. Sweden: Goteborg University (1996).
27.Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L. T. & Hjorting-Hansen, E. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 29, 1223-31 (1995).
28.Wennerberg, A., Albrektsson, T., Andersson, B. & Krol, J. J. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 6, 24-30 (1995).
29.Wennerberg, A., Alkretsson, T., Johansson, C. & Andersson, B. Experimental study of turned and grit-blasted screw shaped implants with special emphasis on effects of blasting materials and surface topographytopography. Biomaterials, 17, 15 (1996).
30.Wennerberg, A., Alberktsson, T. & Lausmaa, J. Torque and histomorphometric evaluation of Cp-titanium screw blasted with 25- and 75-μm particles of Al2O3. J of Biomedical Materials Research., 30, 251 (1996).
31.Pillar, R. Implant stabilization by tissue ingrowth. Proceedings of an International Congress, Brussels. May 1985 60 (1986).
32.Pillar, R., Deporter, D., Watson, P. & Valiquettl, N. Dental implamt design - Effect on bone remodeling. J of Biomedical materials Research, 25, 467 (1991).
33.Wennerberg, A., Alberktsson, T. & Andersson, B. Bone tissue response to commerically pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants, 11, 38 (1996).
34.Brunette, D. M. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 3, 231-46 (1988).
35.Davies, J. E. Mechanisms of endosseous integration. Int J Prosthodont 11, 391-401 (1998).
36.Park, J. & Davies, J. Red blood cell and platelet interactions with titanium implant surface. Clin Oral Impl Res. 11, 530 (2000).
37.Gemmell, C. & Park, J. Initial blood interaction with endossteal implant Materials. Bone engineering, 2000, Davies JE. em squared inc. Toronto Canada., 108 (2000).
38.Pawley, J. Handbook of Biological Confocal Microscopy. Plenum Press, New York, 39 (1995).
39.Curtis, A. & Wilkinson, C. Topographical control of cells. Biomaterials 18, 1573-83 (1997).
40.Kasemo, B. & Lausmaa, J. Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102 Suppl 5, 41-5 (1994).
41.McAlarney, M. E., Oshiro, M. A. & McAlarney, C. V. Effects of titanium dioxide passive film crystal structure, thickness, and crystallinity on C3 adsorption. Int J Oral Maxillofac Implants 11, 73-80 (1996).
42.Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25, 889-902 (1991).
43.Wennerberg, A., Hallgren, C., Johansson, C. & Danelli, S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clinical Oral Implants Research, 9, 11 (1998).
44.Vercaigne, S., Wolke, J. G., Naert, I. & Jansen, J. A. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clin Oral Implants Res 9, 261-71 (1998).
45.Boyan, B. D. et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res 39, 77-85 (1998).
46.Bernard, J. P. et al. 3-year success rates of Short ITI implants in posterior jaws. Medecine Buccale et Ctiirurgie Buccale, 1, 11 (1995).
47.Kieswetter, K. et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32, 55-63 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊