跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君彥
研究生(外文):Chun-Yen Lin
論文名稱:細胞膜蛋白感測晶片之研製-使用氧化銦錫雙電極之連續阻抗量測
論文名稱(外文):Development of bio-chips for cellular-membrane-protein detection- continuous impedance measurement by ITO di-electrode
指導教授:黃豪銘
指導教授(外文):Haw-Ming Huang
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:104
中文關鍵詞:生物感測器氧化銦錫細胞膜蛋白細胞電阻抗量測
外文關鍵詞:Biosensorindium-tin oxide (ITOCellular membrane proteinElectric cell-substrate impedance sensing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
細胞膜蛋白佔全部蛋白的30%,為蛋白質體學計畫中的研究重點。然而目前蛋白質相關的研究方法難以對細胞膜蛋白做非破壞的檢測,也無法長時間對單一樣本做連續變化的觀察。基於此,我們製作出以ITO為電極材料的生物晶片,非破壞性的連續測量細胞的交流阻抗。在本研究中MG-63細胞株培養於自製的ITO玻璃晶片上,當細胞成長數目越多時,電阻抗的變化量也越大,此與測量細胞活性之MTT法比較,有極高的線性相關(R2=0.9883,p<0.005)。本研究亦進一步結合免疫染色的原理,將帶有奈米級金粒子的抗體連結到細胞膜上Integrin β1蛋白,當有越多的Integrin膜蛋白存在時,細胞膜上被連結的金粒子也越多,此時會產生越大的電阻抗變化;與螢光染色法之讀值比較,亦有良好的線性相關(R2=0.9178,p<0.005)。本研究以較經濟的ITO晶片做為細胞膜蛋白非破壞性之研究方法,並為將來藥物篩選、癌細胞檢驗之應用性提供了初步的數據,但仍需要更多實驗佐證細胞膜蛋白量測相關之結果。
Membrane proteins, about 30% of the total proteins, become the major research topics of proteomic projects. There were many techniques were proposed for membrane proteins investigations. However, a method for continuous and long-term protein detection is still unavailable. Accordingly, in this study, we developed an ITO-based biochip for non-destructive membrane protein detection.
In our study, when MG-63 cells were seeded on the ITO-based glass chips, a liner relationship was found when comparing with MTT assay (R2=0.9883, p<0.005). Additionally, when Integrin β1 membrane protein were taken into account, there exist a liner relationship between cell impedance and immuno-fluorescence intensity (R2=0.9178, p<0.005).
In conclusion, we developed a novel ITO biochip for non-destructive membrane protein detection, and provided some preliminary results for future applications. It will be a useful tool for drugs discovery and cancer cells testing. The results obtained from this study can be a useful reference for future advance investigations on membrane-proteins detection.
致謝 ………………………………………………………. I
中文摘要 ………………………………………………………. II
英文摘要 ………………………………………………………. IV
目錄 ………………………………………………………. VI
第一章、緒論…………………………………………………… 1
第一節、研究動機與重要性…………………………… 1
第二節、研究目的……………………………………… 3
第三節、研究假設……………………………………… 3
第四節、名詞界定……………………………………… 4
第二章、文獻回顧……………………………………………… 11
第一節、細胞行為的連續偵測………………………… 11
第二節、電學生物感測晶片之概況…………………… 15
第三節、ITO 在生物醫學的研究…………….………… 16
第三章、材料與方法…………………………………………… 19
第一節、細胞培養……………………………………… 19
第二節、晶片的製作及實驗設備……………………… 22
第三節、玻璃與ITO 表面之細胞培養實驗…………… 28
第四節、ITO 電極選擇實驗…………………………… 29
第五節、細胞阻抗之量測實驗………………………… 30
第六節、細胞膜蛋白之偵測…………………………… 34
第四章、結果…………………………………………………… 40
第五章、討論…………………………………………………… 46
第六章、結論未來研究目標…………………………………… 52
第七章、參考文獻……………………………………………… 54
附錄圖表………………………………………………………… 65
Aoki T, Tanino M, Sanui K, Ogata N and Kumakura K, Secretory function of adrenal chromaffin cells cultured on polypyrrole films, Biomaterials, 17: 1971-1974, (1996).

Armistead PM and Thorp HH, Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes, Anal Chem, 73: 558-564, (2001).

Arora K, Chaubey A, Singhal R, Singh RP, Pandey MK, Samanta SB, Malhotra BD and Chand S, Application of electrochemically prepared polypyrrole-polyvinyl sulphonate films to DNA biosensor, Biosens Bioelectron, 21: 1777-1783, (2006).

Berney HC, Alderman J, Land WA and Collins JK, Development of a capacitive immunosensor: a comparison of monoclonal and polyclonal capture antibodies as the primary layer, J Mol Recogn, 11: 175-177, (1998).

Bieberich E and Guiseppi-Elie A, Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST), Biosens Bioelectron, 19: 923-931, (2004).

Buitenweg JR, Rutten WLC, Willems WPA and van Nieuwkasteele JW, Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy, Med Biol Eng Comput, 36: 630-637, (1998).

Chaubey A, Pande KK and Malhotra BD, Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor, Anal Sci, 19: 1477-1480, (2003).

Cummins CM, Koivunen ME, Stephanian A, Gee SJ, Hammock BD and Kennedy IM, Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide, Biosens Bioelectron, 21: 1077-1085, (2006).

DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I and Vincent P, Electrical impedance of cultured endothelium under fluid flow, Ann Biomed Eng, 29: 648-656, (2001).

Ehret R, Baumann W, Brischwein M, Lehmann M, Henning T, Freund I, Drechsler S, Friedrich U, Hubert ML, Motrescu E, Kob A, Palzer H, Grothe H and Wolf B, Multiparametric microsensor chips for screening applications, J Anal Chem, 369: 30-35, (2001).

Ehret R, Baumann W, Brischwein M, Schwinde A and Wolf B, On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures, Med Biol Eng Comput, 36: 365-370, (1998).

Ghosh PM, Keese CR and Giaever I, Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells, Biophys J, 64: 1602-1609, (1993).

Giaever I and Keese CR, A morphological biosensor for mammalian cells, Nature, 366: 591-592, (1993).

Giaever I and Keese CR, Micromotion of mammalian cells measured electrically, Proc Natl Acad Sci USA, 88: 7896-7900, (1991).

Giaever I and Keese CR, Monitoring fibroblast behavior in tissue culture with an applied electric field, Proc Natl Acad Sci USA, 81: 3761-3764, (1984).

Guo M, Chen J, Yun X, Chen K, Nie L and Yao S, Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy, Biochim Biophys Acta, 1760: 432-439, (2006).

Henning T, Brischwein M, Baumann W, Ehret R, Freund I, Kammerer R, Lehmann M, Schwinde A and Wolf B, Approach to a multiparametric sensor-chip-based tumor chemosensitivity assay, Anticancer Drugs, 12: 21-32, (2001).


Hsieh YC and Whang CW, Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection, J Chromatogr A, 1122: 279-282, (2006).

Kanungo M, Srivastava DN, Kumar A and Contractor AQ, Conductimetric immunosensor based on poly(3,4-ethylenedioxythiophene), Chem Commun, 680-681, (2002).

Keese CR and Giaever I, A biosensor that monitors cell morphology with electrical fields, IEEE Eng Med Biol Mag, June/July: 402-408, (1994).

Keese CR, Wegener J, Walker SR and Giaever I, Electrical wound-healing assay for cells in vitro, PNAS, 101(6): 1554-1559, (2004).

Kimura K, Yanagida Y, Haruyama T, Kobatake E and Aizawa M, Electrically induced neurite outgrowth of PC12 cells on the electrode surface, Med Biol Eng Comput, 36: 493-498, (1998).

Kojima J, Shinohara H, Ikariyama Y, Aizawa M, Nagaike K and Morioka S, Electrically controlled proliferation of human carcinoma cells cultured on the surface of an electrode, J Biotechnol, 18: 129-140, (1991).

Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A and Marks RS, Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen, Anal Chem, 77: 1771-1779, (2005).

Lee TMH, Cai H and Hsing IM, Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection, Analyst, 130: 364-369, (2005).

Lee TMH, Carles MC and Hsing IM, Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection, Lab Chip, 3: 100-105, (2003).

Liron Z, Tender LM, Golden JP and Ligler FS, Voltage-induced inhibition of antigen-antibody binding at conducting optical waveguides, Biosens Bioelectron, 17: 489-494, (2002).

Lo CM, Keese CR and Giaever I, Impedance analysis of MDCK cells measured by Electric Cell-substrate Impedance Sensing, Biophys J, 69: 2800-2807, (1995).

Long YT, Li CZ, Kraatz HB and Lee JS, AC impedance spectroscopy of native DNA and M-DNA, Biophys J, 84: 3218-3225, (2003).

Lucas JH, Kirkpatrick JB and Gross GW, A photoetched cell relocation matrix for long-term, quantitative observations of selected individual neurons in culture, J Neurosci Meth, 14: 211-219, (1985).

Mitsubayashi K, Wakabayashi Y, Tanimoto S, Murotomi D and Endo T, Optical-transparent and flexible glucose sensor with ITO electrode, Biosens Bioelectron, 19: 67-71, (2003).

Möllar R, Powell RD, Hainfeld JF and Fritzsche W, Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips, Nano Lett, 5(7): 1475-1482, (2005).

Moy AB, Winter M, Kamath A, Blackwell K, Reyes G, Giaever I, Keese CR and Shasby DM, Histamine alters endothelial barrier function at cell-cell and cell-matrix sites, Am J Physiol Lung Cell Mol Physiol, 278: L888-L898, (2000).

Nahta R, Yu D, Hung MC, Hortobagyi GN and Esteva FJ, Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer, Nat Clin Pract Oncol, 3: 269-280, (2006).

Nguyen DD, Huang X, Greve DW and Domach MM, Fibroblast growth and H-7 protein kinase inhibitor response monitored in microimpedance sensor arrays, Biotechnol Bioeng, 87(2): 138-144, (2004).

Noiri E, Hu Y, Bahou WF, Keese CR, Giaever I and Goligorsky MS, Permissive role of nitric oxide in endothelin-induced migration of endothelial cells, J Biol Chem, 272(3): 1747-1752, (1997).

Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR, Giaever I and Gologorsky S, Podokinesis in endothelial cell migration: role of nitric oxide, Am J Physiol, 274: C236-C244, (1998).

O’Connor ER, Kimelberg HK, Keese CR and Giaever I, Electrical resistance method for measuring volume changes in monolayer cultures applied to primary astrocyte cultures, Am J Physiol, 264: C471-C478, (1993).

Otto AM, Brischwein M, Motrescu E and Wolf B, Analysis of drug action on tumor cell metabolism using electronic sensor chips, Arch Pharm Pharm Med Chem, 337: 682-686, (2004).

Pan S and Rothberg, Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy, Langmuir, 21: 1022-1027, (2005).

Polakis P, Arming antibodies for cancer therapy, Curr Opin Pharmacol, 5: 382-387, (2005).

Qiu Q, Sayer M, Kawaja M, Shen X and Davies JE, Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces, J Biomed Mater Res, 42: 117-127, (1998).

Reddy L, Wang HS, Keese CR, Giaever I and Smith TJ, Assessment of rapid morphological changes associated with elevated cAMP levels in human orbital fibroblasts, Exp Cell Res, 245: 360-367, (1998).

Schmidt CE, Shastri VR, Vacanti JP and Langer R, Stimulation of neurite outgrowth using an electrically conducting polymer, Proc Natl Acad Sci USA, 94: 8948-8953, (1997).

Sharma SK, Singhal R, Malhotra BD, Sehgal N and Kumar A, Biosensor based on langmuir-blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood, Biotechnol Lett, 26: 645-647, (2004).

Shau H, Chandler GS, Whitelegge JP, Gornbein JA, Faull KF and Chang HR, Proteomic profiling of cancer biomarkers, Brief Funct Genomic Proteomic, 2: 147-158, (2003).

Shiigi H, Tokonami S, Yakaba H and Nagaoka T, Label-free electronic detection of DNA-hybridization on nanogapped gold particle film, J Am Chem Soc, 127: 3280-3281, (2005).

Smith TJ, Wang HS, Hogg MG, Henrikson RC, Keese CR and Giaever I, Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with Graves ophthalmopathy, Proc Natl Acad Sci USA, 91: 5094-5098, (1994).

Tiruppathi C, Malik AB, Del-Vecchio PJ, Keese CR and Giaever I, Electrical method for detection of endothelial cell shape change in real time: Assessment of endothelial barrier function, Proc Natl Acad Sci USA, 89: 7919-7923, (1992).

Tlili C, Reybier K, Géloën A, Ponsonnet L, Martelet C, Ouada HB, Lagarde M and Jaffrezic-Renault N, Fibroblast cells: A sensing bioelement for glucose detection by impedance spectroscopy, Anal Chem, 75: 3340-3344, (2003).

Tomai E, Vultur A, Balboa V, Hsu T, Brownell HL, Firth KL and Raptis L, In Situ electroporation of radioactive compounds into adherent cells, DNA Cell Biol, 22: 339-346, (2003).

Tricoli JV, Schoenfeldt M and Conley BA, Detection of prostate cancer and predicting progression: Current and future diagnostic markers, Clin Cancer Res, 10: 3943-3953, (2004).

Waldmann TA, Effective cancer therapy through immunomodulation, Annu Rev Med, 57: 65-81, (2006).

Wegener J, Keese CR and Giaever I, Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces, Exp Cell Res, 259: 158-166, (2000).

Wegener J, Keese CR and Giaever I, Recovery of adherent cells after in situ electroporation monitored electrically, Biotechniques, 33: 348-357, (2002).

Wong JY, Langer R and Ingber DE, Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells, Proc Natl Acad Sci USA, 91: 3201-3204, (1994).

Xiao C and Luong JHT, Assessment of cytotoxicity by emerging impedance spectroscopy, Toxicol Appl Pharmacol, 206: 102-112, (2005).

Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB and Xu X, Dynamic monitoring of cytotoxicity on microelectronic sensors, Chem Res Toxicol, 18: 154-161, (2005).

Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB and Xu X, Dynamic monitoring of cytotoxicity on microelectronic sensors, Chem Res Toxicol, 18: 154-161, (2005).

Yamamoto T, Nojima T and Fujii T, PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis, Lab Chip, 2: 197-202, (2002).

Yan F and Sadik OA, Enzyme-modulated cleavage of dsDNA for supramolecular design of biosensors, Anal Chem, 73: 5272-5280, (2001).

Yeon JH and Park JK, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Anal Biochem, 341: 308-315, (2005).

Yeon JH and Park JK, Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip, Anal Biochem, 341: 308-315, (2005).

Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X and Abassi YA, Real-time monitoring of morphological changes in living cells by electric cell sensor arrays: an approach to study G protein-coupled receptors, Anal Chem, 78: 35-43, (2006).

黃豪銘, 醫用電子學, 高立, p82-91, (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top