跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂靜宜
研究生(外文):Chin-I Lu
論文名稱:高醣終產物-羧甲基離氨基酸引發胰臟β細胞粒線體功能損傷及細胞死亡
論文名稱(外文):Induced mitochondrial dysfunction and cell death of pancreatic β cells by Nε-(carboxymethyl) lysine
指導教授:高淑慧高淑慧引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學檢驗生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:高醣終產物糖尿病beta細胞
外文關鍵詞:advanced glycation end productiondiabetesbeta cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病患長期處於高血糖的環境下,容易引發葡萄糖自動氧化 (autoxidation)與蛋白質醣化 (glycation)。在糖尿病及老化的過程中,高度醣化終產物advanced glycation end products (AGEs) 被證實其扮演了抑制細胞生長、分化及機能的角色。AGEs是蛋白質或脂質經過非酵素參與之醣化作用 (non-enzymatic glycosylation) 及氧化作用,所形成的最終物質。以羧甲基離氨基酸(Nε-(carboxymethyl) lysine (CML)) 及羧乙基離氨基酸 (carboxyethyl lysine (CEL))為存在於生物體內的主要形式。當AGEs在人體組織內累積過量時,會產生較多的reactive oxygen species (ROS),使得體內氧化壓力增加,進而促使脂質過氧化物增加,並促使血中脂蛋白的醣化及氧化,往往是造成罹患糖尿病、慢性腎病變、動脈硬化症等重要的因素。beta細胞是人體內主要分泌胰島素的場所,研究指出當粒線體功能缺損,ATP形成不足會影響胰島素的分泌。本研究的主旨為探討CML是否經由引發粒線體功能缺損而影響beta細胞功能進而降低分泌胰島素的功能。本實驗是利用大鼠胰島beta細胞 (RIN-m5F細胞株) 為細胞模式,由結果顯示當beta細胞經6 μM CML處理24小時後,發現造成細胞存活率明顯下降到70.4% ± 0.8% (p < 0.001),ROS的產量比對照組增加29.9% ± 15.9% (p < 0.01)。進一步分析粒線體膜電位,發現CML處理可降低粒線體膜電位至13.9% ± 2.3% (p < 0.001)。β細胞經CML處理6小時後,分析細胞內ATP含量,ATP含量減少到對照組的55.9% ± 10.5% (p < 0.01)。此外,我們也發現CML會產生脂質過氧化及粒線體基因重組突變。此外,β細胞的胰島素釋放減少至69.1% ± 0.5% ( p < 0.001)。當以西方墨點法分析發現CML處理可以使粒線體內UCP2增加至112.4% ± 0.1%,而UCP2的增加可能與粒線體的氧化磷酸化作用及膜電位降低有關。本研究發現,CML造成粒線體功能缺損進而降低β細胞的胰島素的含量及分泌能力。我們推論CML可能在β細胞功能缺損,及β細胞mass減少扮演重要的角色。
Abstract
Diabetes is caused by progressive β cell dysfunction, insulin secretion deficiency and insulin resistance. Advanced glycation end products (AGEs) are nonenzymatically formed by reducing glucose, lipids, and/or certain amino acids on proteins, lipids, and nucleic acids. Nε-(carboxymethyl) lysine (CML) and carboxyethyl lysine (CEL) modified proteins have been identified as major AGEs. In this study, we investigated whethen CML might cause β cell malfunction via mitochondrial dysfunction. We examined the effects of CML-BSA on cell viability, insulin synthesis and secretion, and mitochondrial function in rat pancreatic β cells (RIN-m5F cells). Treatment of RIN-M5F cells with CML-BSA (6 μM) reduced the cell viability 70.4% ± 0.8% (p < 0.001) by dye exclusion assay. CML-BSA increased ROS generation as demonstrated in a time-dependent manner. Treatment of cells with CML-BSA (6 μM) reduced ATP production, mitochondrial membrane potential, and insulin secretion by 55.9% ± 10.5% (p < 0.01), 13.9% ± 2.3% (p < 0.001), 69.1% ± 0.5% (p < 0.001) respectively. Furthermore, 12.4% ± 0.1% increased of UCP2 were found in the CML-BSA treated cells. The increased UCP might contribute the declined mitochondrial respiratory activity and mitochondrial membrane potential. These results suggest that CML could attenuate insulin secretion via mitochondrial dysfunction of β cells. CML-BSA might play an important role in the progressive β cells dysfunction and loss of β cells.
縮寫表 1
摘要 3
Abstract 4
研究目的及動機 5
文獻回顧 6
一、糖尿病 (Diabetes Mellitus, DM) 6
二、 胰臟胰島內細胞 (pancreatic cells) 8
三、胰島素 (insulin) 8
四、Advanced glycation end products (AGEs) 9
五、Nε-(Carboxymethyl) lysine (CML) 10
六、粒線體 (mitochondria) 11
1. 粒線體外觀與構造 11
2. 粒線體功能 12
3. 粒線體DNA (mtDNA) 12
4. 粒線體去偶合蛋白家族 (uncoupling protein family) 13
七、氧化壓力 (oxidative stress) 14
八、實驗目的 15
實驗的材料與方法 17
藥品試劑 17
實驗方法 19
ㄧ、大鼠胰臟胰島內β細胞 ( Rattus Norvegicus pancreatic β-cell )培養 19
二、Nε-(carboxymethyl) lysine(CML)-BSA配製 19
三、細胞存活率 (Cell viability) 19
四、細胞蛋白質製備 (Preparation of cell lysate) 20
五、蛋白質定量法 (Protein assay) 20
六、西方墨點法 (Western blotting) 21
七、流式細胞儀分析 22
八、粒線體產生ATP能力測定 24
九、以Lowry方法進行蛋白分析 24
十二、細胞分泌胰島素的能力測定 25
十三、測定粒線體DNA突變 25
十四、分析細胞內相關基因的表現 27
十五、Real-time Quantitative PCR 28
十六、雷射共軛焦顯微鏡 28
十七、統計分析 29
實驗結果 30
一、CML造成β細胞的細胞存活率 (cell viability) 下降 30
二、CML引發β細胞中ROS增加 30
三、CML處理影響細胞粒線體膜電位改變 31
四、CML影響細胞粒線體內ATP的含量 31
五、CML影響β細胞內胰島素的分泌及合成 31
六、CML處理對β細胞內粒線體DNA的影響 32
1. 粒線體DNA copy number 32
2. CML所引發粒線體DNA突變、斷裂與斷損DNA序列分析 32
七、CML引發去偶合蛋白(UCP2)的表現 32
討論 33
參考文獻 39
實驗圖表 51
Table.1本論文所使用的寡核苷酸引子,用來分析Rat β細胞受CML處理後,粒線體 DNA(mtDNA)和基因表現量。 51
Fig. 1.醣化終產物(advanced glycation end products,AGEs)形成的機制 52
Fig. 2.Nε-carboxymethyllysine(CML)化學結構式 53
Fig. 3.CML對rat β 細胞存活率的影響 54
Fig. 4.CML造成rat β細胞存活率隨作用時間增加而下降 55
Fig. 5.CML引發β細胞內ROS增加. 56
Fig. 6.β細胞處理CML後粒線體膜電位的變化 57
Fig. 7.CML造成β細胞ATP含量減少 58
Fig. 8.β細胞處理CML後細胞內proinsulin的變化 59
Fig. 9.β細胞處理CML後降低細胞內胰島素蛋白量的含量 60
Fig.10.β細胞處理CML後胰島素的變化 61
Fig.11.β細胞處理CML後細胞內胰島素的變化 62
Fig.12.β細胞處理CML後胰島素分泌的能力 63
Fig.13.β細胞處理CML後細胞內mtDNA copy numbers的變化 64
Fig.14.β細胞處理CML後造成細胞內mtDNA有刪除(deletion)的現象 65
Fig.15.β細胞處理CML後細胞內UCP2含量的變化 66
Ahmed, N. (2005). Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract 67, 3-21.
Alarcon, C., Wicksteed, B., Prentki, M., Corkey, B. E., and Rhodes, C. J. (2002). Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes 51, 2496-2504.
Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90, 7915-7922.
Anello, M., Lupi, R., Spampinato, D., Piro, S., Masini, M., Boggi, U., Del Prato, S., Rabuazzo, A. M., Purrello, F., and Marchetti, P. (2005). Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48, 282-289.
Arco, A. D., and Satrustegui, J. (2005). New mitochondrial carriers: an overview. Cell Mol Life Sci 62, 2204-2227.
Arkblad, E. L., Tuck, S., Pestov, N. B., Dmitriev, R. I., Kostina, M. B., Stenvall, J., Tranberg, M., and Rydstrom, J. (2005). A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free Radic Biol Med 38, 1518-1525.
Ashcroft, F., and Rorsman, P. (2004). Type 2 diabetes mellitus: not quite exciting enough? Hum Mol Genet 13 Spec No 1, R21-31.
Ashcroft, F. M., Harrison, D. E., and Ashcroft, S. J. (1984). Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446-448.
Ashcroft, F. M., and Kakei, M. (1989). ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J Physiol 416, 349-367.
Balaban, R. S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.
Basta, G., Schmidt, A. M., and De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63, 582-592.
Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412.
Baynes, J. W. (2002). The Maillard hypothesis on aging: time to focus on DNA. Ann N Y Acad Sci 959, 360-367.
Beckman, J. A., Creager, M. A., and Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. Jama 287, 2570-2581.
Bekiarova, G., and Kozarev, I. (1991). [Changes in the osmotic resistance of the erythrocytes in thermal trauma and the role of free-radical oxidation]. Khirurgiia (Sofiia) 44, 43-45.
Bell, G. I., and Polonsky, K. S. (2001). Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 414, 788-791.
Bertrand, G., Gross, R., Puech, R., Loubatieres-Mariani, M. M., and Bockaert, J. (1992). Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br J Pharmacol 106, 354-359.
Bonnefont-Rousselot, D. (2002). Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 5, 561-568.
Boss, O., Samec, S., Paoloni-Giacobino, A., Rossier, C., Dulloo, A., Seydoux, J., Muzzin, P., and Giacobino, J. P. (1997). Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408, 39-42.
Brownlee, M. (1992). Glycation products and the pathogenesis of diabetic complications. Diabetes Care 15, 1835-1843.
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820.
Brownlee, M. (2003). A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112, 1788-1790.
Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., and Vlassara, H. (1994). Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci U S A 91, 9441-9445.
Bucala, R., and Vlassara, H. (1995). Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 26, 875-888.
Cadenas, E., and Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29, 222-230.
Carvalho, C. R., Brenelli, S. L., Silva, A. C., Nunes, A. L., Velloso, L. A., and Saad, M. J. (1996). Effect of aging on insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of rats. Endocrinology 137, 151-159.
Castro, M., Pedrosa, D., and Osuna, J. I. (1993). Impaired insulin release in aging rats: metabolic and ionic events. Experientia 49, 850-853.
Cerami, C., Founds, H., Nicholl, I., Mitsuhashi, T., Giordano, D., Vanpatten, S., Lee, A., Al-Abed, Y., Vlassara, H., Bucala, R., and Cerami, A. (1997). Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 94, 13915-13920.
Ceriello, A. (2003). New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care 26, 1589-1596.
Ceriello, A., Giugliano, D., Quatraro, A., Donzella, C., Dipalo, G., and Lefebvre, P. J. (1991). Vitamin E reduction of protein glycosylation in diabetes. New prospect for prevention of diabetic complications? Diabetes Care 14, 68-72.
Chan, C. B., De Leo, D., Joseph, J. W., McQuaid, T. S., Ha, X. F., Xu, F., Tsushima, R. G., Pennefather, P. S., Salapatek, A. M., and Wheeler, M. B. (2001). Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302-1310.
Chan, C. B., MacDonald, P. E., Saleh, M. C., Johns, D. C., Marban, E., and Wheeler, M. B. (1999). Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes 48, 1482-1486.
Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605.
Checkoway, H., Farin, F. M., Costa-Mallen, P., Kirchner, S. C., and Costa, L. G. (1998). Genetic polymorphisms in Parkinson''s disease. Neurotoxicology 19, 635-643.
Cline, G. W., Lepine, R. L., Papas, K. K., Kibbey, R. G., and Shulman, G. I. (2004). 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. J Biol Chem 279, 44370-44375.
Cooper, M. E. (2004). Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens 17, 31S-38S.
Cooper, M. E., Thallas, V., Forbes, J., Scalbert, E., Sastra, S., Darby, I., and Soulis, T. (2000). The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia 43, 660-664.
Coordt, M. C., Ruhe, R. C., and McDonald, R. B. (1995). Aging and insulin secretion. Proc Soc Exp Biol Med 209, 213-222.
Del Guerra, S., Lupi, R., Marselli, L., Masini, M., Bugliani, M., Sbrana, S., Torri, S., Pollera, M., Boggi, U., Mosca, F., et al. (2005). Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54, 727-735.
Deo, S. S., Gore, S. D., Deobagkar, D. N., and Deobagkar, D. D. (2006). Study of inheritance of diabetes mellitus in Western Indian population by pedigree analysis. J Assoc Physicians India 54, 441-444.
Dieter, P., Arlt, U., and Fitzke, E. (1995). Different regulation of the formation of intra- and extracellular oxygen radicals in macrophages. Biol Signals 4, 331-337.
Dominguez, J. H., Tang, N., Xu, W., Evan, A. P., Siakotos, A. N., Agarwal, R., Walsh, J., Deeg, M., Pratt, J. H., March, K. L., et al. (2000). Studies of renal injury III: lipid-induced nephropathy in type II diabetes. Kidney Int 57, 92-104.
Draper, C. E., Singh, J., and Adeghate, E. (2003). Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem 248, 7-16.
Dunn, J. A., McCance, D. R., Thorpe, S. R., Lyons, T. J., and Baynes, J. W. (1991). Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 30, 1205-1210.
Dunne, M. J., Cosgrove, K. E., Shepherd, R. M., Aynsley-Green, A., and Lindley, K. J. (2004). Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 84, 239-275.
Dyer, D. G., Dunn, J. A., Thorpe, S. R., Bailie, K. E., Lyons, T. J., McCance, D. R., and Baynes, J. W. (1993). Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91, 2463-2469.
Eble, A. S., Thorpe, S. R., and Baynes, J. W. (1983). Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem 258, 9406-9412.
Echtay, K. S., Winkler, E., Frischmuth, K., and Klingenberg, M. (2001). Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98, 1416-1421.
Eto, K., Tsubamoto, Y., Terauchi, Y., Sugiyama, T., Kishimoto, T., Takahashi, N., Yamauchi, N., Kubota, N., Murayama, S., Aizawa, T., et al. (1999). Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283, 981-985.
Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23, 599-622.
Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2003). Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1-8.
Finkel, T. (1998). Oxygen radicals and signaling. Curr Opin Cell Biol 10, 248-253.
Finkel, T., and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.
Flamez, D., Berger, V., Kruhoffer, M., Orntoft, T., Pipeleers, D., and Schuit, F. C. (2002). Critical role for cataplerosis via citrate in glucose-regulated insulin release. Diabetes 51, 2018-2024.
Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15, 269-272.
Florence, J. A., and Yeager, B. F. (1999). Treatment of type 2 diabetes mellitus. Am Fam Physician 59, 2835-2844, 2849-2850.
Foulis, A. K., McGill, M., and Farquharson, M. A. (1991). Insulitis in type 1 (insulin-dependent) diabetes mellitus in man--macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol 165, 97-103.
Fridovich, I. (1999). Fundamental aspects of reactive oxygen species, or what''s the matter with oxygen? Ann N Y Acad Sci 893, 13-18.
Friedman, E. A., Distant, D. A., Fleishhacker, J. F., Boyd, T. A., and Cartwright, K. (1997). Aminoguanidine prolongs survival in azotemic-induced diabetic rats. Am J Kidney Dis 30, 253-259.
Giardino, I., Edelstein, D., and Brownlee, M. (1994). Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 94, 110-117.
Giardino, I., Edelstein, D., and Brownlee, M. (1996). BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest 97, 1422-1428.
Gimeno, R. E., Dembski, M., Weng, X., Deng, N., Shyjan, A. W., Gimeno, C. J., Iris, F., Ellis, S. J., Woolf, E. A., and Tartaglia, L. A. (1997). Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900-906.
Gloyn, A. L., Pearson, E. R., Antcliff, J. F., Proks, P., Bruining, G. J., Slingerland, A. S., Howard, N., Srinivasan, S., Silva, J. M., Molnes, J., et al. (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350, 1838-1849.
Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., and Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 104, 1287-1291.
Gong, D. W., He, Y., Karas, M., and Reitman, M. (1997). Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 272, 24129-24132.
Griesmacher, A., Kindhauser, M., Andert, S. E., Schreiner, W., Toma, C., Knoebl, P., Pietschmann, P., Prager, R., Schnack, C., Schernthaner, G., and et al. (1995). Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med 98, 469-475.
Gutteridge, J. M., and Halliwell, B. (1989). Iron toxicity and oxygen radicals. Baillieres Clin Haematol 2, 195-256.
Ha, H., and Lee, H. B. (2000). Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl 77, S19-25.
Halliwell, B. (1987). Oxidants and human disease: some new concepts. Faseb J 1, 358-364.
Hammes, H. P., Hoerauf, H., Alt, A., Schleicher, E., Clausen, J. T., Bretzel, R. G., and Laqua, H. (1999). N(epsilon)(carboxymethyl)lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40, 1855-1859.
Hann, L. E., Kelleher, R. S., and Sullivan, D. A. (1991). Influence of culture conditions on the androgen control of secretory component production by acinar cells from the rat lacrimal gland. Invest Ophthalmol Vis Sci 32, 2610-2621.
Henle, T. (2003). AGEs in foods: do they play a role in uremia? Kidney Int Suppl, S145-147.
Henquin, J. C. (2004). Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 53 Suppl 3, S48-58.
Hodges, N. J., and Chipman, J. K. (2002). Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells. Carcinogenesis 23, 55-60.
Hoek, J. B., and Rydstrom, J. (1988). Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254, 1-10.
Huang, P., Feng, L., Oldham, E. A., Keating, M. J., and Plunkett, W. (2000). Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390-395.
Hudson, B. I., Bucciarelli, L. G., Wendt, T., Sakaguchi, T., Lalla, E., Qu, W., Lu, Y., Lee, L., Stern, D. M., Naka, Y., et al. (2003). Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys 419, 80-88.
Huebschmann, A. G., Regensteiner, J. G., Vlassara, H., and Reusch, J. E. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care 29, 1420-1432.
Ichikawa, I., Kiyama, S., and Yoshioka, T. (1994). Renal antioxidant enzymes: their regulation and function. Kidney Int 45, 1-9.
Jaburek, M., Varecha, M., Gimeno, R. E., Dembski, M., Jezek, P., Zhang, M., Burn, P., Tartaglia, L. A., and Garlid, K. D. (1999). Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274, 26003-26007.
John, W. G., and Lamb, E. J. (1993). The Maillard or browning reaction in diabetes. Eye 7 ( Pt 2), 230-237.
Kahn, S. E. (2001). Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86, 4047-4058.
Kahn, S. E. (2003). The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46, 3-19.
Kakkar, R., Kalra, J., Mantha, S. V., and Prasad, K. (1995). Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 151, 113-119.
Kaneko, M., Bucciarelli, L., Hwang, Y. C., Lee, L., Yan, S. F., Schmidt, A. M., and Ramasamy, R. (2005). Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann N Y Acad Sci 1043, 702-709.
Kilhovd, B. K., Berg, T. J., Birkeland, K. I., Thorsby, P., and Hanssen, K. F. (1999). Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22, 1543-1548.
Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M., Yan, S. F., Pischetsrieder, M., Stern, D., and Schmidt, A. M. (1999). N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274, 31740-31749.
Kitabchi, A. E., Umpierrez, G. E., Murphy, M. B., Barrett, E. J., Kreisberg, R. A., Malone, J. I., and Wall, B. M. (2004). Hyperglycemic crises in diabetes. Diabetes Care 27 Suppl 1, S94-102.
Klahr, S. (1997). Oxygen radicals and renal diseases. Miner Electrolyte Metab 23, 140-143.
Klingenberg, M., and Huang, S. G. (1999). Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415, 271-296.
Kobayashi, T., Nakanishi, K., Nakase, H., Kajio, H., Okubo, M., Murase, T., and Kosaka, K. (1997). In situ characterization of islets in diabetes with a mitochondrial DNA mutation at nucleotide position 3243. Diabetes 46, 1567-1571.
Kong, W. J., Hu, Y. J., Wang, Q., Wang, Y., Han, Y. C., Cheng, H. M., Kong, W., and Guan, M. X. (2006). The effect of the mtDNA4834 deletion on hearing. Biochem Biophys Res Commun 344, 425-430.
Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., and Beal, M. F. (1997). Energy metabolism defects in Huntington''s disease and effects of coenzyme Q10. Ann Neurol 41, 160-165.
Krauss, S., Zhang, C. Y., Scorrano, L., Dalgaard, L. T., St-Pierre, J., Grey, S. T., and Lowell, B. B. (2003). Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112, 1831-1842.
Krippeit-Drews, P., Kramer, C., Welker, S., Lang, F., Ammon, H. P., and Drews, G. (1999). Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 514 ( Pt 2), 471-481.
Kroemer, G., Zamzami, N., Marchetti, P., and Castedo, M. (1995). Maintenance of the T lymphocyte pool by inhibition of apoptosis: a novel strategy of immunostimulation? Curr Top Microbiol Immunol 200, 223-235.
Lee, H. C., and Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-834.
Li, Y. M., Steffes, M., Donnelly, T., Liu, C., Fuh, H., Basgen, J., Bucala, R., and Vlassara, H. (1996). Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci U S A 93, 3902-3907.
Lowell, B. B., and Shulman, G. I. (2005). Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387.
Lu, D., Mulder, H., Zhao, P., Burgess, S. C., Jensen, M. V., Kamzolova, S., Newgard, C. B., and Sherry, A. D. (2002). 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A 99, 2708-2713.
Maassen, J. A., Janssen, G. M., and t Hart, L. M. (2005). Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37, 213-221.
Maechler, P., Carobbio, S., and Rubi, B. (2006). In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol 38, 696-709.
Maechler, P., Jornot, L., and Wollheim, C. B. (1999). Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274, 27905-27913.
Maechler, P., and Wollheim, C. B. (1999). Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402, 685-689.
Maechler, P., and Wollheim, C. B. (2001). Mitochondrial function in normal and diabetic beta-cells. Nature 414, 807-812.
Malaisse, W. J., Hutton, J. C., Kawazu, S., Herchuelz, A., Valverde, I., and Sener, A. (1979). The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia 16, 331-341.
Mandrup-Poulsen, T. (2001). beta-cell apoptosis: stimuli and signaling. Diabetes 50 Suppl 1, S58-63.
Marchetti, P., Del Guerra, S., Marselli, L., Lupi, R., Masini, M., Pollera, M., Bugliani, M., Boggi, U., Vistoli, F., Mosca, F., and Del Prato, S. (2004). Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 89, 5535-5541.
Marchetti, P., Lupi, R., Federici, M., Marselli, L., Masini, M., Boggi, U., Del Guerra, S., Patane, G., Piro, S., Anello, M., et al. (2002). Insulin secretory function is impaired in isolated human islets carrying the Gly(972)-->Arg IRS-1 polymorphism. Diabetes 51, 1419-1424.
Maritim, A. C., Sanders, R. A., and Watkins, J. B., 3rd (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17, 24-38.
Miura, J., Yamagishi, S., Uchigata, Y., Takeuchi, M., Yamamoto, H., Makita, Z., and Iwamoto, Y. (2003). Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with Type 1 diabetes. J Diabetes Complications 17, 16-21.
Miyata, T., Ueda, Y., Yamada, Y., Izuhara, Y., Wada, T., Jadoul, M., Saito, A., Kurokawa, K., and van Ypersele de Strihou, C. (1998). Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol 9, 2349-2356.
Miyata, T., van Ypersele de Strihou, C., Kurokawa, K., and Baynes, J. W. (1999). Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications. Kidney Int 55, 389-399.
Miyawaki, K., Yamada, Y., Yano, H., Niwa, H., Ban, N., Ihara, Y., Kubota, A., Fujimoto, S., Kajikawa, M., Kuroe, A., et al. (1999). Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 96, 14843-14847.
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267-273.
Neumann, A., Schinzel, R., Palm, D., Riederer, P., and Munch, G. (1999). High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett 453, 283-287.
Nicholls, D. G. (2002). Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34, 1372-1381.
Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790.
Nishimura, G., Proske, R. J., Doyama, H., and Higuchi, M. (2001). Regulation of apoptosis by respiration: cytochrome c release by respiratory substrates. FEBS Lett 505, 399-404.
Pacher, P., and Szabo, C. (2005). Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 7, 1568-1580.
Peppa, M., Uribarri, J., and Vlassara, H. (2002). Advanced glycoxidation. A new risk factor for cardiovascular disease? Cardiovasc Toxicol 2, 275-287.
Perfetti, R., Rafizadeh, C. M., Liotta, A. S., and Egan, J. M. (1995). Age-dependent reduction in insulin secretion and insulin mRNA in isolated islets from rats. Am J Physiol 269, E983-990.
Poitout, V., and Robertson, R. P. (2002). Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity. Endocrinology 143, 339-342.
Polonsky, K. S., Sturis, J., and Bell, G. I. (1996). Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus - a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 334, 777-783.
Prentki, M., Joly, E., El-Assaad, W., and Roduit, R. (2002). Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 3, S405-413.
Rantanen, A., and Larsson, N. G. (2000). Regulation of mitochondrial DNA copy number during spermatogenesis. Hum Reprod 15 Suppl 2, 86-91.
Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., and Baynes, J. W. (1995). N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34, 10872-10878.
Rial, E., Gonzalez-Barroso, M., Fleury, C., Iturrizaga, S., Sanchis, D., Jimenez-Jimenez, J., Ricquier, D., Goubern, M., and Bouillaud, F. (1999). Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. Embo J 18, 5827-5833.
Robertson, R. P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279, 42351-42354.
Rocha, E. M., de, M. L. M. H., Carvalho, C. R., Saad, M. J., and Velloso, L. A. (2000). Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats. Curr Eye Res 21, 833-842.
Roduit, R., Nolan, C., Alarcon, C., Moore, P., Barbeau, A., Delghingaro-Augusto, V., Przybykowski, E., Morin, J., Masse, F., Massie, B., et al. (2004). A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 53, 1007-1019.
Sakurai, A., Miyamoto, T., Refetoff, S., and DeGroot, L. J. (1990). Dominant negative transcriptional regulation by a mutant thyroid hormone receptor-beta in a family with generalized resistance to thyroid hormone. Mol Endocrinol 4, 1988-1994.
Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
Sazanov, L. A., and Jackson, J. B. (1994). Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 344, 109-116.
Schleicher, E. D., Wagner, E., and Nerlich, A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99, 457-468.
Schuit, F., De Vos, A., Farfari, S., Moens, K., Pipeleers, D., Brun, T., and Prentki, M. (1997). Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272, 18572-18579.
Sharp, P. S., Rainbow, S., and Mukherjee, S. (2003). Serum levels of low molecular weight advanced glycation end products in diabetic subjects. Diabet Med 20, 575-579.
Shimosawa, T., Ogihara, T., Matsui, H., Asano, T., Ando, K., and Fujita, T. (2003). Deficiency of adrenomedullin induces insulin resistance by increasing oxidative stress. Hypertension 41, 1080-1085.
Silva, J. P., Kohler, M., Graff, C., Oldfors, A., Magnuson, M. A., Berggren, P. O., and Larsson, N. G. (2000). Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26, 336-340.
Simmons, R. A., Suponitsky-Kroyter, I., and Selak, M. A. (2005). Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem 280, 28785-28791.
Simon, H. U., Haj-Yehia, A., and Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418.
Singh, R., Barden, A., Mori, T., and Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia 44, 129-146.
Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 100-124.
Smiley, S. T., Reers, M., Mottola-Hartshorn, C., Lin, M., Chen, A., Smith, T. W., Steele, G. D., Jr., and Chen, L. B. (1991). Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88, 3671-3675.
Staniek, K., Gille, L., Kozlov, A. V., and Nohl, H. (2002). Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Free Radic Res 36, 381-387.
Steiner, D. F. (2004). The proinsulin C-peptide--a multirole model. Exp Diabesity Res 5, 7-14.
Stitt, A. W., Frizzell, N., and Thorpe, S. R. (2004). Advanced glycation and advanced lipoxidation: possible role in initiation and progression of diabetic retinopathy. Curr Pharm Des 10, 3349-3360.
Szabo, C. (2005). Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol Res 52, 60-71.
Szabo, C., and Dawson, V. L. (1998). Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19, 287-298.
Thannickal, V. J., and Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279, L1005-1028.
Turk, Z., Ljubic, S., Turk, N., and Benko, B. (2001). Detection of autoantibodies against advanced glycation endproducts and AGE-immune complexes in serum of patients with diabetes mellitus. Clin Chim Acta 303, 105-115.
Unger, R. H. (1995). Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44, 863-870.
Unger, R. H. (2002). Lipotoxic diseases. Annu Rev Med 53, 319-336.
Urata, Y., Yamaguchi, M., Higashiyama, Y., Ihara, Y., Goto, S., Kuwano, M., Horiuchi, S., Sumikawa, K., and Kondo, T. (2002). Reactive oxygen species accelerate production of vascular endothelial growth factor by advanced glycation end products in RAW264.7 mouse macrophages. Free Radic Biol Med 32, 688-701.
Uribarri, J., Cai, W., Sandu, O., Peppa, M., Goldberg, T., and Vlassara, H. (2005). Diet-derived advanced glycation end products are major contributors to the body''s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 1043, 461-466.
Vasan, S., Zhang, X., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., et al. (1996). An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382, 275-278.
Verchere, C. B., Paoletta, M., Neerman-Arbez, M., Rose, K., Irminger, J. C., Gingerich, R. L., Kahn, S. E., and Halban, P. A. (1996). Des-(27-31)C-peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules. J Biol Chem 271, 27475-27481.
Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J. S., and Lowell, B. B. (1997). UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235, 79-82.
Virag, L., and Szabo, C. (2002). The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54, 375-429.
Vlassara, H. (1997). Recent progress in advanced glycation end products and diabetic complications. Diabetes 46 Suppl 2, S19-25.
Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., Peppa, M., and Rayfield, E. J. (2002). Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 99, 15596-15601.
Vlassara, H., and Palace, M. R. (2002). Diabetes and advanced glycation endproducts. J Intern Med 251, 87-101.
Vlassara, H., and Uribarri, J. (2004). Glycoxidation and diabetic complications: modern lessons and a warning? Rev Endocr Metab Disord 5, 181-188.
Wautier, J. L., and Schmidt, A. M. (2004). Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95, 233-238.
Wikman, H., Risch, A., Klimek, F., Schmezer, P., Spiegelhalder, B., Dienemann, H., Kayser, K., Schulz, V., Drings, P., and Bartsch, H. (2000). hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population. Int J Cancer 88, 932-937.
Wollheim, C. B. (2000). Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in type II diabetes. Diabetologia 43, 265-277.
Wollheim, C. B., and Maechler, P. (2002). Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51 Suppl 1, S37-42.
Woon, E. C., and Threadgill, M. D. (2005). Poly(ADP-ribose)polymerase inhibition - where now? Curr Med Chem 12, 2373-2392.
Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., Pinsky, D., and Stern, D. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269, 9889-9897.
Yang, S., Litchfield, J. E., and Baynes, J. W. (2003). AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch Biochem Biophys 412, 42-46.
Yoon, J. C., Xu, G., Deeney, J. T., Yang, S. N., Rhee, J., Puigserver, P., Levens, A. R., Yang, R., Zhang, C. Y., Lowell, B. B., et al. (2003). Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell 5, 73-83.
Zoukhri, D., Hodges, R. R., Byon, D., and Kublin, C. L. (2002). Role of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia. Invest Ophthalmol Vis Sci 43, 1429-1436.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top