跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳凱真
研究生(外文):Kai-Chen Wu
論文名稱:以不同細胞外間質促使於體外大量擴大增生後已近靜止之人類軟骨細胞再度活化及分化
論文名稱(外文):The activation or redifferentiation of grossly expanded, progressively quiescent human chondrocytes with various extracellular matrix polymers
指導教授:蔡郁惠
指導教授(外文):Yu-Hui Tsai
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:細胞及分子生物研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:細胞外間質軟骨細胞
外文關鍵詞:extracellular matrixchondrocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
軟骨細胞為軟骨唯一的一種細胞型態,以關節軟骨來說,軟骨覆蓋在硬骨的末端。細胞外間質是一個富含水分的構造,包括膠原蛋白及以玻尿酸為骨架由其他軟骨硫素(chondroitin sulfate),keratan sulfate和蛋白質分子所構成的聚葡萄糖胺(glycosaminoglycan)。包埋在細胞外間質結構裡的軟骨細胞可以製造新的膠原蛋白和聚葡萄糖胺。在體外培養的實驗中,當軟骨細胞經過連續的分盤培養之後,會漸漸的失去其原有的型態,這個過程稱之為去分化。依據我們實驗室之前的研究,外加第二型膠原蛋白於連續的分盤培養後已漸漸去分化之兔子軟骨細胞,可再度刺激軟骨細胞分泌第二型膠原蛋白及聚葡萄糖胺。在本篇論文的研究中,我們探討外加細胞外間質分子(如:第二型膠原蛋白,玻尿酸或軟骨硫素)是否對人類已去分化的軟骨細胞有相同作用,因此我們於去分化之人類軟骨細胞培養中,以追踪其恢復細胞分化的能力。研究結果證明,細胞外間質分子之第二型膠原蛋白可刺激已去分化之軟骨細胞再度分泌第二型膠原蛋白及聚葡萄糖胺。若外加細胞外間質分子,第二型膠原蛋白,可刺激軟骨細胞再度分化,則此研究成果將可應用於關節炎的治療上。此外,integrins為細胞外間質蛋白質的接受器(如:膠原蛋白,fibronectin,laminins),本論文的另一研究方向為探討細胞外間質物質-第二型膠原蛋白與其接受器integrins結合後所引發的訊息傳遞路徑。我們發現第二型膠原蛋白確定可促使ERK的磷酸化,ERK的磷酸化對於軟骨細胞的分化似乎具有重要的意義。
Chondrocyte is the sole cell type of the cartilage. At the joint, cartilage covers the end of the bone. The extracellular matrix (ECM), a structure of highly hydrated matrix, is consisted of collagen, and glycosaminoglycan (GAG) which is made of hyauronic acid back bone with many other chondroitin sulfate, keratan sulfate and protein components. Chondrocytes are embedded in this ECM structure and produce new collagen and GAGs in cartilage. When chondrocytes are serially expanded, they progressively lose their original phenotype, this process typically described as dedifferentiation. According to previous studies in our laboratory, exogenous type II collagen promoted re-expression of type II collagen mRNA and GAG accumulation in near quiescent rabbit chondrocytes. In this study, we treat human chondrocytes with various exogenous extracellular matrix components (i.e. type II collagen, hyaluronic acid, or chondroitin sulfate). The results demonstrated that exogenous type II collagen indeed induced the re-expression of type II collagen and aggrecan mRNAs, and glycosaminoglycan (GAG) levels. Since exogenous type II collagen indeed make near quiescent chondrocytes re-differentiate, therefore, its preparations maybe be applied to osteoarthritis therapy in the future. In addition, integrins are the principal receptors on animal cells for the most of extracellular matrix proteins ― including collagens, fibronectin, and laminins. Consequently, this study also examined the related signal pathway of integrin. We found that the extracellular signal-regulared protein kinase (ERK) was activated during the induction of the differentiation of dedifferentiated chondrocytes.
1.中文摘要 -------------------------------------------- 1
2.英文摘要 -------------------------------------------- 3
3.縮寫字對照表 ---------------------------------------- 5
4.序論 ------------------------------------------------ 6
5.研究目的 -------------------------------------------- 17
6.研究材料與方法 -------------------------------------- 18
7.實驗結果 -------------------------------------------- 27
8.討論 ------------------------------------------------ 32
9.圖 -------------------------------------------------- 38
10.附錄 ----------------------------------------------- 58
11.參考文獻 ------------------------------------------- 67
一、書目
Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell.Page.1091-1096

L. C. Juneira, J. Carneiro. (國立台灣大學醫學院-許元昱,李旺祈,郭文勵等 翻譯) Histology, Chapter.7

二、期刊
Aronheim, A., Engelberg, D., Li, N., al-Alawi, N., Schlessinger, J., and Karin, M. (1994). Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949-961.

Bansal, M. K., Ward, H., and Mason, R. M. (1986). Proteoglycan synthesis in suspension cultures of Swarm rat chondrosarcoma chondrocytes and inhibition by exogenous hyaluronate. Arch Biochem Biophys 246, 602-610.

Benya, P. D., and Shaffer, J. D. (1982). Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215-224.

Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999). Sox9 is required for cartilage formation. Nat Genet 22, 85-89.

Bockholt, S. M., and Burridge, K. (1993). Cell spreading on extracellular matrix proteins induces tyrosine phosphorylation of tensin. J Biol Chem 268, 14565-14567.

Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., and Fujinaga, T. (2006). Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93, 1152-1163.

Burridge, K., Turner, C. E., and Romer, L. H. (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119, 893-903.

Carrington, J. L. (2005). Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun 328, 700-708.

Chen, Q., Kinch, M. S., Lin, T. H., Burridge, K., and Juliano, R. L. (1994). Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 269, 26602-26605.

Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995). Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation 59, 25-34.

Dennler, S., Goumans, M. J., and ten Dijke, P. (2002). Transforming growth factor beta signal transduction. J Leukoc Biol 71, 731-740.

Derynck, R., and Feng, X. H. (1997). TGF-beta receptor signaling. Biochim Biophys Acta 1333, F105-150.

Durr, J., Goodman, S., Potocnik, A., von der Mark, H., and von der Mark, K. (1993). Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 207, 235-244.

Emsley, J., Knight, C. G., Farndale, R. W., and Barnes, M. J. (2004). Structure of the integrin alpha2beta1-binding collagen peptide. J Mol Biol 335, 1019-1028.

Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000). Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47-56.

Enomoto-Iwamoto, M., Iwamoto, M., Nakashima, K., Mukudai, Y., Boettiger, D., Pacifici, M., Kurisu, K., and Suzuki, F. (1997). Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res 12, 1124-1132.

Eswarakumar, V. P., Lax, I., and Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16, 139-149.

Frean, S. P., Abraham, L. A., and Lees, P. (1999). In vitro stimulation of equine articular cartilage proteoglycan synthesis by hyaluronan and carprofen. Res Vet Sci 67, 183-190.

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-1032.

Goldring, M. B. (1999). The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 40, 1-11.

Goldring, M. B. (2000). Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2, 459-465.

Guerne, P. A., Blanco, F., Kaelin, A., Desgeorges, A., and Lotz, M. (1995). Growth factor responsiveness of human articular chondrocytes in aging and development. Arthritis Rheum 38, 960-968.

Guerne, P. A., Sublet, A., and Lotz, M. (1994). Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158, 476-484.

Harmer, S. L., and DeFranco, A. L. (1997). Shc contains two Grb2 binding sites needed for efficient formation of complexes with SOS in B lymphocytes. Mol Cell Biol 17, 4087-4095.

Hermansson, M., Sawaji, Y., Bolton, M., Alexander, S., Wallace, A., Begum, S., Wait, R., and Saklatvala, J. (2004). Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes. J Biol Chem 279, 43514-43521.

Hickery, M. S., Bayliss, M. T., Dudhia, J., Lewthwaite, J. C., Edwards, J. C., and Pitsillides, A. A. (2003). Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem 278, 53063-53071.

Hunziker, E. B., Quinn, T. M., and Hauselmann, H. J. (2002). Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564-572.

Hunziker, E. B., Wagner, J., and Zapf, J. (1994). Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest 93, 1078-1086.

Ikeda, T., Kawaguchi, H., Kamekura, S., Ogata, N., Mori, Y., Nakamura, K., Ikegawa, S., and Chung, U. I. (2005). Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab 23, 337-340.

Kanai, Y., and Koopman, P. (1999). Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum Mol Genet 8, 691-696.

Kawasaki, K., Ochi, M., Uchio, Y., Adachi, N., and Matsusaki, M. (1999). Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J Cell Physiol 179, 142-148.

Knudson, C. B., and Knudson, W. (2001). Cartilage proteoglycans. Semin Cell Dev Biol 12, 69-78.

Lee, J. W., and Juliano, R. (2004). Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells 17, 188-202.

Lee, J. W., Kim, Y. H., Kim, S. H., Han, S. H., and Hahn, S. B. (2004). Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 45 Suppl, 41-47.

Lin, Z., Willers, C., Xu, J., and Zheng, M. H. (2006). The chondrocyte: biology and clinical application. Tissue Eng 12, 1971-1984.

Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., Zini, N., Solimando, L., Mario Maraldi, N., and Facchini, A. (2005). Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 26, 5677-5686.

Loftus, J. C., and Liddington, R. C. (1997). Cell adhesion in vascular biology. New insights into integrin-ligand interaction. J Clin Invest 99, 2302-2306.

Lutz, M., and Knaus, P. (2002). Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal 14, 977-988.

Maleski, M. P., and Knudson, C. B. (1996). Matrix accumulation and retention in embryonic cartilage and in vitro chondrogenesis. Connect Tissue Res 34, 75-86.

Martel-Pelletier, J., Di Battista, J. A., Lajeunesse, D., and Pelletier, J. P. (1998). IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 47, 90-100.

Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753-791.

Massague, J. (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1, 169-178.

Miot, S., Woodfield, T., Daniels, A. U., Suetterlin, R., Peterschmitt, I., Heberer, M., van Blitterswijk, C. A., Riesle, J., and Martin, I. (2005). Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials 26, 2479-2489.

Miranti, C. K., and Brugge, J. S. (2002). Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4, E83-90.

Miura, Y., Fitzsimmons, J. S., Commisso, C. N., Gallay, S. H., and O''Driscoll, S. W. (1994). Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1). Clin Orthop Relat Res, 271-280.

Murakami, S., Kan, M., McKeehan, W. L., and de Crombrugghe, B. (2000). Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 97, 1113-1118.

Nagase, H., and Kashiwagi, M. (2003). Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5, 94-103.

Nishimoto, S., Takagi, M., Wakitani, S., Nihira, T., and Yoshida, T. (2005). Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. J Biosci Bioeng 100, 123-126.

Otsuka, Y., Mizuta, H., Takagi, K., Iyama, K., Yoshitake, Y., Nishikawa, K., Suzuki, F., and Hiraki, Y. (1997). Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage. Dev Growth Differ 39, 143-156.

Qi, W. N., and Scully, S. P. (1997). Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor-beta 1. J Orthop Res 15, 483-490.

Qi, W. N., and Scully, S. P. (1998). Effect of type II collagen in chondrocyte response to TGF-beta 1 regulation. Exp Cell Res 241, 142-150.

Qi, W. N., and Scully, S. P. (2003). Type II collagen modulates the composition of extracellular matrix synthesized by articular chondrocytes. J Orthop Res 21, 282-289.

Reilly, G. C., Golden, E. B., Grasso-Knight, G., and Leboy, P. S. (2005). Differential effects of ERK and p38 signaling in BMP-2 stimulated hypertrophy of cultured chick sternal chondrocytes. Cell Commun Signal 3, 3.

Ruoslahti, E., and Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238, 491-497.

Sandell, L. J., and Aigner, T. (2001). Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3, 107-113.

Schlaepfer, D. D., Hanks, S. K., Hunter, T., and van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791.

Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V., and Schlegel, J. (2002). Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10, 62-70.

Schneiderbauer, M. M., Dutton, C. M., and Scully, S. P. (2004). Signaling "cross-talk" between TGF-beta1 and ECM signals in chondrocytic cells. Cell Signal 16, 1133-1140.

Schulze-Tanzil, G., Mobasheri, A., de Souza, P., John, T., and Shakibaei, M. (2004). Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage 12, 448-458.

Scully, S. P., Lee, J. W., Ghert, P. M. A., and Qi, W. (2001). The role of the extracellular matrix in articular chondrocyte regulation. Clin Orthop Relat Res, S72-89.

Shakibaei, M., De Souza, P., and Merker, H. J. (1997). Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21, 115-125.

Shakibaei, M., John, T., De Souza, P., Rahmanzadeh, R., and Merker, H. J. (1999). Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342 Pt 3, 615-623.

Shakibaei, M., Schulze-Tanzil, G., de Souza, P., John, T., Rahmanzadeh, M., Rahmanzadeh, R., and Merker, H. J. (2001). Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276, 13289-13294.

Svoboda, K. K. (1998). Chondrocyte-matrix attachment complexes mediate survival and differentiation. Microsc Res Tech 43, 111-122.

Tallheden, T., Bengtsson, C., Brantsing, C., Sjogren-Jansson, E., Carlsson, L., Peterson, L., Brittberg, M., and Lindahl, A. (2005). Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Res Ther 7, R560-568.

Tanimoto, K., Suzuki, A., Ohno, S., Honda, K., Tanaka, N., Doi, T., Nakahara-Ohno, M., Yoneno, K., Nakatani, Y., Ueki, M., et al. (2004). Hyaluronidase expression in cultured growth plate chondrocytes during differentiation. Cell Tissue Res 318, 335-342.

ten Dijke, P., Miyazono, K., and Heldin, C. H. (2000). Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 25, 64-70.

Trippel, S. B., Corvol, M. T., Dumontier, M. F., Rappaport, R., Hung, H. H., and Mankin, H. J. (1989). Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res 25, 76-82.

van Susante, J. L. C., Pieper, J., Buma, P., van Kuppevelt, T. H., van Beuningen, H., van Der Kraan, P. M., Veerkamp, J. H., van den Berg, W. B., and Veth, R. P. H. (2001). Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 22, 2359-2369.

von der Mark, K., Gauss, V., von der Mark, H., and Muller, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531-532.

Wang, J. H., and Thampatty, B. P. (2006). An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5, 1-16.

Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E., and Giancotti, F. G. (1996). The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733-743.

Yoon, Y. M., Kim, S. J., Oh, C. D., Ju, J. W., Song, W. K., Yoo, Y. J., Huh, T. L., and Chun, J. S. (2002). Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem 277, 8412-8420.

Zimmerman, C. M., and Padgett, R. W. (2000). Transforming growth factor beta signaling mediators and modulators. Gene 249, 17-30.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top