(3.237.20.246) 您好!臺灣時間:2021/04/15 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃詩婷
研究生(外文):Shih-Ting Huang
論文名稱:研究介白素15號系統對口服免疫耐受性之影響
論文名稱(外文):Study of Role of The Interleukin-15 System in Oral Tolerance Induction
指導教授:廖南詩
指導教授(外文):Nan-Shih Liao
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:細胞及分子生物研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:口服免疫耐受性介白素15號
外文關鍵詞:oral toleranceIL-15
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介白素15號(interleukin-15, IL-15)為一個14-15 kD之細胞激素,於造血細胞、表皮細胞等多型態細胞中均可偵測其表現。IL-15受器(receptor, R)由?恁B?牷B?蚺T個蛋白質所組成,其中,?捙鴐衰L-15R所特有,對IL-15具高度親和性;?狺??袓鴢h與IL-2R共用,對IL-15具中度親和性。IL-15基因刪除 (IL-15 knock-out, IL-15-/-)及 IL-15R??-/-小鼠之自然殺手細胞T 細胞、記憶型CD8+ T細胞及CD8????+ 小腸上皮內淋巴細胞(intestine intraepithelial lymphocytes, iIEL)均減少90%以上。口服免疫耐受性為自我耐受性中的一種形式,若小鼠以口服方式接受抗原後,再以相同抗原伴隨輔助劑給予刺激,則其免疫系統會降低對該抗原之反應時稱之。隨著餵食抗原劑量不同,口服免疫耐受性可產生不同機制:餵食低劑量抗原時,可誘使調節性T細胞(regulatory T cell, Treg cell)產生,並釋放出轉型生長因子(transforming growth factor, TGF)-?牷BIL-4及IL-10;餵食高劑量抗原時,則會造成抗原專一性T細胞系刪除(clonal deletion)或失去活化能力(anergy)。Treg cell除了可調節外來抗原所產生之耐受反應外,亦可抑制自我反應之T細胞。我們實驗室曾於Il15-/-及Il15ra-/-小鼠中發現自體抗體之表現。說明於Il15-/-及Il15ra-/-小鼠中,其Treg cell可能失去抑制細胞活化之功能。此外,CD103+樹突細胞(dendritic cell, DC)可影響Treg cell抑制抗原專一性細胞活化之反應,我們亦發現Il15-/-及Il15ra-/-小鼠具有較少比例之CD103+ DC。因此,我假設IL-15可藉由CD103+ DC及Treg cell影響口服免疫耐受性之產生。此篇論文中,我們使用帶有可辨識鷄卵白蛋白(ovalbumin, OVA) 胜肽鏈(peptide)323-339片段之轉基因TCR的WT, Il15-/-及Il15ra-/-小鼠,以探討IL-15系統與誘發口服免疫耐受性之關聯。結果顯示,三基因型小鼠餵食OVA後,其腸繫膜淋巴結(mesenteric lymph node cell, MLN)細胞可降低對OVA再刺激之反應性;而其Treg cells (包含CD25+Foxp3+及CD25+CD103+ CD4+ T 細胞)及CD103+ DC之細胞比例卻不因餵食OVA而有所改變。因此說明,OT-II轉基因小鼠於誘發口服免疫耐受性產生時,並不受IL-15影響。
Interleukin-15 (IL-15) is a 14-15 kD protein, expressed by hematopoietic cells as well as by most other types of cells. IL-15 receptor (IL-15R) consists of ??, ??, and the common ?? (?莕) chain. The ?? and ?莕 chains form intermediate affinity receptor for IL-15 and IL-2, while the ?? chain is exclusive for binding IL-15 with high affinity even in the absence of the ???莕 subunits. Il-15 knock-out (Il15-/-) and Il15ra-/- mice show severe deficiency in natural killer cells (NK), NKT cell, memory CD8+ T cells, and CD8????+ intestine intraepithelial lymphocytes (iIEL). Oral tolerance is a form of self tolerance in response to non-harmful antigens came through the intestine. It refers to the phenomenon that feeding a rodent with soluble protein rendered the animal hyporesponsive to parenteral immunization with the same protein plus adjuvant. Different mechanisms underlie oral tolerance depending on the dose of fed antigen. Low dose antigen induces antigen-specific regulatory T cells (Treg cells), which produce inhibitory cytokines such as transforming growth factor-?? (TGF-??), IL-4, and IL-10. High dose antigen may result in anergy/deletion of antigen-specific T cells. In addition to tolerance to non-harmful foreign antigens, Treg cells inhibit activation of autoreactive T cells in the periphery. Our lab found that aged female Il15-/- and Il15ra-/- mice produced autoantibodies, implicating dysfunction of Treg cells in these mice. We also found that Il15-/- and Il15ra-/-mice harbor less frequency of CD103+ dendritic cells (DC) compared to wild-type (WT) mice. CD103+ DC is required for the suppressive function of Treg cells in oral tolerance. Therefore, I hypothesize that IL-15 positively modulate oral tolerance induction through CD103+ DC and Treg cells. In this thesis, I determined the role of the IL-15 system in oral tolerance induction by comparative analysis of WT, Il15-/- and Il15ra-/- mice expressing the transgenic T cell receptor that recognizes an ovalbumin (OVA) peptide 323-329 presented by I-Ab. I found that mesenteric lymph node cells in all three types of mice fed with OVA showed reduced response to OVA re-stimulation in vitro. Moreover, the frequencies of Treg cells, CD25+Foxp3+ and CD25+CD103+ CD4+ T cells, and the frequence of CD103+ DC were similar among WT and knock-out mice fed with OVA or PBS. These results suggest that IL-15 system is not required for oral tolerance induction in OT-II mice.
中文摘要.................第 i頁
英文摘要.....................第 iii頁
目次.....................第 v 頁
圖目錄........................第viii 頁
辭彙及符號說明.................第ix頁

第壹章 緒論
一、介白素15號系統.............第 1頁
1. 介白素15號..............第 1頁
2. IL-15受器...............第 1頁
3. IL-15之使用方式............第 2頁
4. IL-15之功能..............第 2頁
二、口服免疫耐受性..............第 3頁
1. 口服免疫耐受性之定義..........第 3頁
2. 口服免疫耐受性之誘發組織........第 3頁
3. 口服免疫耐受性之影響因素........第 4頁
I. 抗原劑量..............第 4頁
II. 性別................第 5頁
III. DC與口服免疫耐受性之關係......第 5頁
三、介白素15號與口服免疫耐受性之相關性...第 6頁

第貳章 研究材料及方法
一、 實驗小鼠.................第 9頁
二、 細胞培養液...............第 9頁
三、 溶液..................第 9頁
四、 試劑、藥品.................第 12頁
五、 器材....................第 13頁
六、 抗體....................第 13頁
七、 實驗方法..................第 14頁

第參章 實驗結果
一、 檢測OT-II轉基因小鼠可否誘發口服免疫耐受性.....................第 19頁
二、 檢測性別對於誘發口服免疫耐受性之影響....第 21頁
三、 檢測IL-15系統對於誘發口服免疫耐受性之影響.....................第 21頁
1. IL-15系統於誘發口服免疫耐受性時對細胞族群之影響....................第 22頁
I. CD25+Foxp3+ T細胞...........第 22頁
II. CD25+CD103+ T細胞..........第23頁
III. CD103+ DC...............第 24頁
2. 檢測OT-II、OT-II/IL-15-/-及OT-II/IL-15R??-/-小鼠之口服免疫耐受性.................第 24頁

第肆章 討論.....................第 26頁
圖表........................第29頁
參考文獻......................第37頁
附錄.......................第43頁
1.Grabstein, K.H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M.A. Schoenborn, M. Ahdieh, and et al. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965-968.
2.Burton, J.D., R.N. Bamford, C. Peters, A.J. Grant, G. Kurys, and C.K. Goldman. 1994. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. USA 91:4935-4939.
3.Musso, T., L. Calosso, M. Zucca, M. Millesimo, D. Ravarino, M. Giovarelli, F. Malavasi, A.N. Ponzi, R. Paus, and S. Bulfone-Paus. 1999. Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93:3531-3539.
4.Neely, G.G., S.M. Robbins, E.K. Amankwah, S. Epelman, H. Wong, J.C. Spurrell, K.K. Jandu, W. Zhu, D.K. Fogg, C.B. Brown, and C.H. Mody. 2001. Lipopolysaccharide-stimulated or granulocyte-macrophage colony-stimulating factor-stimulated monocytes rapidly express biologically active IL-15 on their cell surface independent of new protein synthesis. J Immunol 167:5011-5017.
5.Doherty, T.M., R.A. Seder, and A. Sher. 1996. Induction and regulation of IL-15 expression in murine macrophages. J Immunol 156:735-741.
6.Jonuleit, H., K. Wiedemann, G. Muller, J. Degwert, U. Hoppe, J. Knop, and A.H. Enk. 1997. Induction of IL-15 messenger RNA and protein in human blood-derived dendritic cells: a role for IL-15 in attraction of T cells. J Immunol 158:2610-2615.
7.Ruckert, R., K. Asadullah, M. Seifert, V.M. Budagian, R. Arnold, C. Trombotto, R. Paus, and S. Bulfone-Paus. 2000. Inhibition of keratinocyte apoptosis by IL-15: a new parameter in the pathogenesis of psoriasis? J Immunol 165:2240-2250.
8.Leclercq, G., V. Debacker, M. de Smedt, and J. Plum. 1996. Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J Exp Med 184:325-336.
9.Murray, A.M., B. Simm, and K.W. Beagley. 1998. Cytokine gene expression in murine fetal intestine: potential for extrathymic T cell development. Cytokine 10:337-345.
10.Giri, J.G., S. Kumaki, M. Ahdieh, D.J. Friend, A. Loomis, K. Shanebeck, R. DuBose, D. Cosman, L.S. Park, and D.M. Anderson. 1995. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. Embo J 14:3654-3663.
11.Stock, P., O. Akbari, G. Berry, G.J. Freeman, R.H. Dekruyff, and D.T. Umetsu. 2004. Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 5:1149-1156.
12.Anderson, D.M., S. Kumaki, M. Ahdieh, J. Bertles, M. Tometsko, A. Loomis, J. Giri, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and et al. 1995. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 270:29862-29869.
13.Waldmann, T.A., and Y. Tagaya. 1999. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19-49.
14.Fehniger, T.A., and M.A. Caligiuri. 2001. Interleukin 15: biology and relevance to human disease. Blood 97:14-32.
15.Schluns, K.S., K.D. Klonowski, and L. Lefrancois. 2004. Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood 103:988-994.
16.Dubois, S., J. Mariner, T.A. Waldmann, and Y. Tagaya. 2002. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17:537-547.
17.Burkett, P.R., R. Koka, M. Chien, S. Chai, D.L. Boone, and A. Ma. 2004. Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 200:825-834.
18.Sandau, M.M., K.S. Schluns, L. Lefrancois, and S.C. Jameson. 2004. Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 173:6537-6541.
19.Armitage, R.J., B.M. Macduff, J. Eisenman, R. Paxton, and K.H. Grabstein. 1995. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 154:483-490.
20.D''Agostino, P., S. Milano, F. Arcoleo, G. Di Bella, M. La Rosa, V. Ferlazzo, R. Caruso, N. Chifari, G. Vitale, S. Mansueto, and E. Cillari. 2004. Interleukin-15, as interferon-gamma, induces the killing of Leishmania infantum in phorbol-myristate-acetate-activated macrophages increasing interleukin-12. Scand J Immunol 60:609-614.
21.Maeurer, M.J., P. Trinder, G. Hommel, W. Walter, K. Freitag, D. Atkins, and S. Storkel. 2000. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect Immun 68:2962-2970.
22.Mattei, F., G. Schiavoni, F. Belardelli, and D.F. Tough. 2001. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167:1179-1187.
23.Berard, M., K. Brandt, S. Bulfone-Paus, and D.F. Tough. 2003. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170:5018-5026.
24.Ye, S.K., K. Maki, H.C. Lee, A. Ito, K. Kawai, H. Suzuki, T.W. Mak, Y. Chien, T. Honjo, and K. Ikuta. 2001. Differential roles of cytokine receptors in the development of epidermal gamma delta T cells. J Immunol 167:1929-1934.
25.Lodolce, J.P., P.R. Burkett, R.M. Koka, D.L. Boone, and A. Ma. 2002. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 13:429-439.
26.Zhang, X., S. Sun, I. Hwang, D.F. Tough, and J. Sprent. 1998. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591-599.
27.Becknell, B., and M.A. Caligiuri. 2005. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209-239.
28.Kennedy, M.K., M. Glaccum, S.N. Brown, E.A. Butz, J.L. Viney, M. Embers, N. Matsuki, K. Charrier, L. Sedger, C.R. Willis, K. Brasel, P.J. Morrissey, K. Stocking, J.C. Schuh, S. Joyce, and J.J. Peschon. 2000. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771-780.
29.Lodolce, J.P., D.L. Boone, S. Chai, R.E. Swain, T. Dassopoulos, S. Trettin, and A. Ma. 1998. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669-676.
30.Wells, H. 1911. Studies on the chemistry of anaphylaxis III. Experiments with isolated proteins, especially those of hen''s egg. J. Infect. Dis. 8:147-171.
31.Chase, M.W. 1946. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc. Soc. Exp. Biol. Med. 61:257-259.
32.Spahn, T.W., A. Fontana, A.M. Faria, A.J. Slavin, H.P. Eugster, X. Zhang, P.A. Koni, N.H. Ruddle, R.A. Flavell, P.D. Rennert, and H.L. Weiner. 2001. Induction of oral tolerance to cellular immune responses in the absence of Peyer''s patches. Eur J Immunol 31:1278-1287.
33.Spahn, T.W., H.L. Weiner, P.D. Rennert, N. Lugering, A. Fontana, W. Domschke, and T. Kucharzik. 2002. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer''s patches. Eur J Immunol 32:1109-1113.
34.Fujihashi, K., T. Dohi, P.D. Rennert, M. Yamamoto, T. Koga, H. Kiyono, and J.R. McGhee. 2001. Peyer''s patches are required for oral tolerance to proteins. Proc Natl Acad Sci U S A 98:3310-3315.
35.Tsuji, N.M., K. Mizumachi, and J. Kurisaki. 2001. Interleukin-10-secreting Peyer''s patch cells are responsible for active suppression in low-dose oral tolerance. Immunology 103:458-464.
36.Worbs, T., U. Bode, S. Yan, M.W. Hoffmann, G. Hintzen, G. Bernhardt, R. Forster, and O. Pabst. 2006. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203:519-527.
37.Friedman, A., and H.L. Weiner. 1994. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 91:6688-6692.
38.Zhang, X., L. Izikson, L. Liu, and H.L. Weiner. 2001. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 167:4245-4253.
39.Miller, A., O. Lider, A.B. Roberts, M.B. Sporn, and H.L. Weiner. 1992. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A 89:421-425.
40.Chen, Y., J. Inobe, R. Marks, P. Gonnella, V.K. Kuchroo, and H.L. Weiner. 1995. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376:177-180.
41.Bebo, B.F., Jr., K. Adlard, J.C. Schuster, L. Unsicker, A.A. Vandenbark, and H. Offner. 1999. Gender differences in protection from EAE induced by oral tolerance with a peptide analogue of MBP-Ac1-11. J Neurosci Res 55:432-440.
42.Johansson, C., and B.L. Kelsall. 2005. Phenotype and function of intestinal dendritic cells. Semin Immunol 17:284-294.
43.Viney, J.L., A.M. Mowat, J.M. O''Malley, E. Williamson, and N.A. Fanger. 1998. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160:5815-5825.
44.Min, S.Y., K.S. Park, M.L. Cho, J.W. Kang, Y.G. Cho, S.Y. Hwang, M.J. Park, C.H. Yoon, J.K. Min, S.H. Lee, S.H. Park, and H.Y. Kim. 2006. Antigen-induced, tolerogenic CD11c+,CD11b+ dendritic cells are abundant in Peyer''s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis. Arthritis Rheum 54:887-898.
45.Ehirchiou, D., Y. Xiong, G. Xu, W. Chen, Y. Shi, and L. Zhang. 2007. CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J Exp Med 204:1519-1524.
46.Annacker, O., J.L. Coombes, V. Malmstrom, H.H. Uhlig, T. Bourne, B. Johansson-Lindbom, W.W. Agace, C.M. Parker, and F. Powrie. 2005. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051-1061.
47.Ruchatz, H., B.P. Leung, X.Q. Wei, I.B. McInnes, and F.Y. Liew. 1998. Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J Immunol 160:5654-5660.
48.Mortier, E., J. Bernard, A. Plet, and Y. Jacques. 2004. Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific, high affinity IL-15 antagonist. J Immunol 173:1681-1688.
49.Millington, O.R., X.Q. Wei, P. Garside, and A.M. Mowat. 2004. Interleukin-15 is not required for the induction or maintenance of orally induced peripheral tolerance. Immunology 113:304-309.
50.Faria, A.M., R. Maron, S.M. Ficker, A.J. Slavin, T. Spahn, and H.L. Weiner. 2003. Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-beta/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. J Autoimmun 20:135-145.
51.Wakabayashi, A., Y. Kumagai, E. Watari, M. Shimizu, M. Utsuyama, K. Hirokawa, and H. Takahashi. 2006. Importance of gastrointestinal ingestion and macromolecular antigens in the vein for oral tolerance induction. Immunology 119:167-177.
52.Kunkel, D., D. Kirchhoff, S. Nishikawa, A. Radbruch, and A. Scheffold. 2003. Visualization of peptide presentation following oral application of antigen in normal and Peyer''s patches-deficient mice. Eur J Immunol 33:1292-1301.
53.Melamed, D., J. Fishman-Lovell, Z. Uni, H.L. Weiner, and A. Friedman. 1996. Peripheral tolerance of Th2 lymphocytes induced by continuous feeding of ovalbumin. Int Immunol 8:717-724.
54.Papenfuss, T.L., C.J. Rogers, I. Gienapp, M. Yurrita, M. McClain, N. Damico, J. Valo, F. Song, and C.C. Whitacre. 2004. Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J Neuroimmunol 150:59-69.
55.Jordan, M.S., A. Boesteanu, A.J. Reed, A.L. Petrone, A.E. Holenbeck, M.A. Lerman, A. Naji, and A.J. Caton. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301-306.
56.Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330-336.
57.Inobe, J., A.J. Slavin, Y. Komagata, Y. Chen, L. Liu, and H.L. Weiner. 1998. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 28:2780-2790.
58.Weiner, H.L. 2001. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207-214.
59.Groux, H., A. O''Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, and M.G. Roncarolo. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737-742.
60.Foussat, A., F. Cottrez, V. Brun, N. Fournier, J.P. Breittmayer, and H. Groux. 2003. A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J Immunol 171:5018-5026.
61.Lehmann, J., J. Huehn, M. de la Rosa, F. Maszyna, U. Kretschmer, V. Krenn, M. Brunner, A. Scheffold, and A. Hamann. 2002. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci U S A 99:13031-13036.
62.Johansson-Lindbom, B., M. Svensson, O. Pabst, C. Palmqvist, G. Marquez, R. Forster, and W.W. Agace. 2005. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063-1073.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔