跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙洪興
研究生(外文):Hung-Hsing Chao
論文名稱:17-β-雌二醇及白黎蘆醇在心臟血管系統的抗氧化作用及機轉
論文名稱(外文):Antioxidant Effects of 17-β-estradiol and Resveratrol on Cardiovascular System
指導教授:徐國基徐國基引用關係
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:120
中文關鍵詞:心臟血管重塑血管收縮素II內皮素活性氧17-β-雌二醇白黎蘆醇
外文關鍵詞:cardiovascular remodelingangiotensin IIendothelin-1reactive oxygen species17-β-estradiolresveratrol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管內皮細胞的功能異常,平滑肌細胞及心臟纖維母細胞的增生會引起心臟血管重塑,來影響心臟血管系統的功能及結構,而引起心臟衰竭。以細胞學的角度來看,以上的過程會產生包括心血管細胞生長、細胞凋亡、細胞游走、以及發炎與纖維反應。多項因素會影響心血管細胞的變化,其中又以血管收縮素Ⅱ﹙angiotensinⅡ﹚的影響最為重要,血管收縮素Ⅱ是藉由與其血管收縮素Ⅱ之Ⅰ型受體結合而產生一系列生理或病理的反應。有越來越多的證據顯示,血管收縮素Ⅱ產生心血管病變是藉由NADPH氧化酶活化形成之活性氧﹙reactive oxygen species﹚所引起。活性氧在細胞內扮演第二訊息傳遞者的角色,來調節下游的訊息傳導及轉錄因子的活性,例如:mitogen-activated protein kinase、以及 activator protein-1 (AP-1) ,而當此訊息傳導被激化後,會增加內皮素 (endothelin-1) 的分泌來調節內皮細胞的功能,血管平滑肌細胞之生長及游走,以及細胞外物質如纖維母細胞的變更。活性氧藉由改變細胞內氧化還原反應來調節訊息傳導,在正常的生理情況下此作用為維持心血管功能的正常,但是在病理狀況下活性氧藉由氧化損傷(oxidative damage)來造成心血管功能的失調。以下三個相關實驗的主要目的是研究活性氧由血管收縮素Ⅱ激化內皮素在心血管細胞內的作用機轉,並且藉由兩種天然抗氧化劑17-β-雌二醇 (17-β-estradiol) 及白黎蘆醇 (resveratrol) 抑制其作用機轉而降低心血管細胞之傷害。
第一部份的研究是評估由血管收縮素Ⅱ引起內皮素基因的表現是否經由活性氧的媒介而來,並且探討其在血管內皮細胞內的作用機轉。培養基的內皮細胞在接受血管收縮素Ⅱ的刺激下,以北方墨點方法(Northern blotting) 以及促進子活性分析法 (promoter activity assay) 來測內皮素基因的表現。在先接受抗氧化劑治療之內皮細胞,經由血管收縮素Ⅱ刺激下所引起extracellular signal-regulated kinase﹙ERK﹚的磷酸化會顯著降低。由血管收縮素Ⅱ引起之內皮素基因的表現可被血管收縮素I型受體拮抗劑(irbesartan)以及各種抗氧化劑所抑制。而irbesartan以及各種抗氧化劑亦可抑制由血管收縮素Ⅱ所促進細胞內活性氧的產生,並且本實驗證實由血管收縮素Ⅱ引起之ERK磷酸化,亦會顯著的被一些抗氧化劑所抑制。另外ERK的拮抗劑U0126可完全抑制由血管收縮素Ⅱ引起之內皮素基因的表現。將Ras,Raf 以及MEK1﹙ERK kinase﹚的dominant negative mutants一起轉染則會降低由血管收縮素Ⅱ引起之內皮素促進子活性,由此可推論Ras-Raf-ERK pathway參予血管收縮素Ⅱ引起內皮素的基因表現。抗氧化劑可抑制由血管收縮素Ⅱ引起之AP-1的活性,在變異分析中顯示由血管收縮素Ⅱ引起內皮素基因表現中,內皮素基因之促進子 (promoter) 有cis-acting element AP-1之結合位置。由以上實驗顯示,活性氧參予血管內皮細胞中由血管收縮素Ⅱ引起之內皮素基因的表現,並且氧化還原反應(redox-sensitive)之ERK-mediated AP-1 轉錄路徑在血管收縮素Ⅱ引起內皮素基因表現中佔有重要角色。
第二部份的研究是評估17-β-雌二醇﹙17-β-estradiol﹚在心臟纖維母細胞中是否會抑制由血管收縮素Ⅱ引起之細胞增生與內皮素基因表現以及其訊息傳導路徑。培養基的心臟纖維母細胞先給予17-β-雌二醇處理之後再以血管收縮素Ⅱ刺激來檢試【3H】thymidine incorporation以及內皮素基因的表現,並且探討17-β-雌二醇在血管收縮素Ⅱ引起之NADPH oxidase活性,活性氧的形成,以及ERK的磷酸化。17-β-雌二醇﹙1-100nM﹚可抑制由血管收縮素Ⅱ引起之細胞DNA合成,但是17-α-雌二醇不具此抑制功能。而此作用可被雌激素受體拮抗劑ICI 182.780所拮抗。另外17-β-雌二醇可以抑制由血管收縮素Ⅱ引起NADPH oxidase活性的增加,活性氧形成的增加,ERK磷酸化反應增加,以及AP-1 mediated reporter 活性的增加。總言之,本實驗證實17-β-雌二醇具備抗氧化作用可抑制由血管收縮素Ⅱ引起之細胞增生及內皮素基因的表現,以及抑制其訊息傳導路徑,由此可證實17-β-雌二醇在血管系統的益處。
第三部份的研究是評估白黎蘆醇在血管平滑肌細胞中是否會改變由血管收縮素Ⅱ引起之細胞增生與內皮素基因表現及其訊息傳導路徑。培養基的動脈平滑肌細胞先給予白黎蘆醇的處理,再在血管收縮素Ⅱ刺激下檢試【3H】thymidine incorporation及內皮素基因的表現。並且檢驗由血管收縮素Ⅱ引起之ERK 磷酸化的程度來探討白黎蘆醇抑制在細胞內引起細胞增生及內皮素基因表現的機轉。在北方墨點方法以及促進子活性分析法的檢驗下,白黎蘆醇﹙1-100μM﹚可以抑制由血管緊縮素Ⅱ引起之細胞DNA合成及內皮素基因的表現。利用檢驗2’7’-dichlorodihydrofluorescein diacetate (a redox sensitive fluorescent dye) 的方式測得白黎蘆醇可抑制由血管收縮素Ⅱ引起之細胞內活性氧的形成。並且白黎蘆醇以及其他抗氧劑N-acetyl-cysteine可抑制由血管收縮素Ⅱ引起ERK 磷酸化以及AP-1的活性。總言之,本實驗證實白黎蘆醇具備抗氧化作用可抑制由血管收縮素Ⅱ引起之細胞增生及內皮素基因的表現,以及抑制其訊息傳導路徑。由此可證實白黎蘆醇在心血管系統的正面角色。
以上實驗證實血管收縮素Ⅱ引起細胞內活性氧活化並且藉由氧化還原反應之ERK-mediated AP-1 transcriptional pathway而促進細胞增生及內皮素基因的表現。抗氧化劑17-β-雌二醇以及白黎蘆醇具備抑制以上所述之功能,此證據可強力支持17-β-雌二醇以及白黎蘆醇在心血管系統的抗氧化作用。
Diseases such as hypertension, coronary atherosclerosis, myocardial infarction leading to heart failure are associated with cardiovascular system functional and structural changes. These include endothelial dysfunction, smooth muscle cell and cardiac fibroblast proliferation which resulting in cardiovascular remodeling. Cellular events underlying these processes involve changes in cardiovascular cells growth, apoptosis, migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic cardiovascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling transduction and transcriptional factors, such as mitogen-activated protein kinase and activator protein-1 (AP-1). Induction of this signaling cascades leads to increases such as endothelin-1 (ET-1) gene expression and regulation of endothelial function, vascular smooth muscle cell growth and migration, and modification of extracellular matrix. ROS influence signaling molecules by altering the intracellular redox state. In physiological conditions, these events play an important role in maintaining cardiovascular function and integrity. Under pathological conditions ROS contribute to cardiovascular dysfunction and remodeling through oxidative damage.
The following three studies focus on related issues. The first study investigated ROS in Ang II increases ET-1 gene expression and related intracellular mechanism in cardiovascular cells. Both of the subsequent two studies pursued the relationship of two natural antioxidants, one examining 17-β-estradiol and the other study resveratrol, and the mechanisms by which they both singularly contribute to suppressing the signaling pathways and the ensuring beneficial antioxidant effect on the cardiovascular system.
In the first part of the studies, we evaluated whether ROS are involved in Ang II-induced ET-1 gene expression, and the related intracellular mechanisms occurring within vascular endothelial cells. Cultured endothelial cells were stimulated with Ang II, and Northern blotting and a promoter activity assay examined the so-elicited ET-1 gene expression. Antioxidant pre-treatment of endothelial cells was performed prior to Ang II-induced extracellular signal-regulated kinase (ERK) phosphorylation in order to elucidate the redox-sensitive pathway for ET-1 gene expression. The ET-1 gene was induced with Ang II which was inhibited with AT1 receptor antagonist (irbesartan). Ang II-enhanced intracellular ROS levels were inhibited by irbesartan and several antioxidants, and antioxidants suppressed Ang II-induced ET-1 gene expression. Furthermore, Ang II-activated ERK phosphorylation was also significantly inhibited by certain antioxidants. An ERK inhibitor, U0126 inhibited Ang II-induced ET-1 expression completely. Co-transfection of the dominant negative mutant of Ras, Raf and MEK1 (ERK kinase) attenuated the Ang II-enhanced ET-1 promoter activity, suggesting that the Ras-Raf-ERK pathway is required for the Ang II-induced ET-1 gene expression. Ang II-induced AP-1 reporter activities were inhibited by antioxidants. Moreover, mutational analysis of the ET-1 gene promoter showed that the AP-1 binding site was an important cis-acting element in Ang II-induced ET-1 gene expression. Our first data suggest that ROS are involved in Ang II-induced ET-1 gene expression within endothelial cells. The redox-sensitive ERK-mediated AP-1 transcriptional pathway plays an important role in Ang II-induced ET-1 gene expression.
In the second part of the studies we examine whether 17-β-estradiol may alter Ang II-induced cell proliferation and identify the putative underlying signaling pathways in rat cardiac fibroblasts. Cultured rat cardiac fibroblasts were pre-incubated with 17-β-estradiol then stimulated with Ang II, [3H]thymidine incorporation and ET-1 gene expression were examined. The effect of 17-β-estradiol on Ang II-induced NADPH oxidase activity, ROS formation, and ERK phosphorylation were tested to elucidate the intracellular mechanism of 17-β-estradiol in proliferation and ET-1 gene expression. Ang II increased DNA synthesis, which was inhibited with 17-β-estradiol (1–100 nM). 17-β-estradiol, but not 17-a-estradiol, inhibited the Ang II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by co-incubation with the estrogen receptor antagonist ICI 182.780 (1 μM). 17-β-estradiol also inhibited Ang II-increased NADPH oxidase activity, ROS formation, ERK phosphorylation, and AP-1-mediated reporter activity. In summary, our second results suggest that 17-β-estradiol inhibits Ang II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.
In the third part of the studies, we examine whether resveratrol alters Ang II-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with resveratrol then stimulated with Ang II, after which [3H] thymidine incorporation and ET-1 gene expression were examined. The intracellular mechanism of resveratrol in cellular proliferation and ET-1 gene expression was elucidated by examining the phosphorylation level of Ang II-induced ERK. The inhibitory effects of resveratrol (1–100 μM) on Ang II-induced DNA synthesis and ET-1 gene expression were demonstrated with Northern blot and promoter activity assays. Measurements of 2’7’-dichlorodihydrofluorescin diacetate, a redox sensitive fluorescent dye, showed a resveratrol-mediated inhibition of intracellular ROS generated by the effects of Ang II. The inductive properties of Ang II and H2O2 on ERK phosphorylation and AP-1-mediated reporter activity were found reversed with resveratrol and antioxidants such as N-acetyl-cysteine. In summary, Our third results speculate that resveratrol inhibits Ang II-induced cell proliferation and ET-1 gene expression, which involves the disruption of the ERK pathway via attenuation of ROS generation. Thus, this study provides important insight into the molecular pathways that may contribute to the proposed beneficial effects of resveratrol on the cardiovascular system.
In conclusion, our three in vitro studies all clearly indicate that Ang II-induced intracellular ROS act as second messengers and via redox-sensitive ERK-mediated AP-1 transcriptional pathway to stimulate the cell proliferation and ET-1 expression in various cardiovascular cells. Both 17-β-estradiol and resveratrol have inhibitory effects on this signaling. These data strongly support the proposed beneficial antioxidant effects of 17-β-estradiol and resveratrol in the cardiovascular system.
目 錄

中文摘要………………………………………………………………...………1

英文摘要……………………………………………………………...…………5

第一章 緒論
第一節 背景及研究目的 …………..….…………………………..…11
第二節 17-β-雌二醇 (17-β-estrodiol) 的介紹…..….……………19
第三節 白黎蘆醇(resveratrol)的介紹…..………….…………….23

第二章 Reactive Oxygen Species-Sensitive Extracellular Signal-Regulated Kinase Pathway在血管內皮細胞中由血管收縮素Ⅱ激發內皮素基因表現的作用
第一節 前言………………………………….…………..…………..27
第二節 實驗方法與材料…………………….……………..………..29
第三節 結果………………………………….……………..………..40
第四節 討論………………………………….……………..………..45
第五節 圖…………………………………….……………..………..49

第三章 17-β-雌二醇在大鼠心臟纖維母細胞中抑制血管收縮素Ⅱ促進內皮素基因表現的作用
第一節 前言.………………………………………………..………..56
第二節 實驗方法與材料.…………………………………..………..58
第三節 結果………………………………..…….…………………..63
第四節 討論…………………………….….……………….………..67
第五節 圖…………………………….……………..………………..70
第四章 白黎蘆醇在大鼠動脈平滑肌細胞中抑制血管收縮素Ⅱ促進內皮素基因表現的作用
第一節 前言………………………………………....….……………74
第二節 實驗方法與材料……………………………….…………....77
第三節 結果…………………………………….…....………………81
第四節 討論…………………………………….…..…..……………84
第五節 圖………………………………………….…………………87

第五章 總結與展望……………………………………….…………………..92

第六章 參考文獻 ……...………………………………….…………………..99

第七章 附錄……………..……………………………..…….………………119
.




圖 目 錄

圖1 白黎蘆醇的結構式 ……………..………………….……………..…..…….24
圖2-1 血管收縮素Ⅱ在內皮細胞中對於內皮素基因表現的影響 ……..….…...49
圖2-2 Irbesartan在內皮細胞中對於血管收縮素Ⅱ促進內皮素基因表現的影響 ………….…….………………………………………………………...50
圖2-3 在內皮細胞中血管收縮素Ⅱ對於活性氧產生的影響 ………….…….…51
圖2-4 活性氧在內皮細胞中對於血管收縮素Ⅱ促進內皮素基因表現的影響 ..52
圖2-5 ERK對於血管收縮素Ⅱ促進內皮素基因表現的影響………..…………53
圖2-6 AP-1 motif對於血管收縮素Ⅱ促進內皮素promoter活性的影響 ………54
圖2-7 血管收縮素Ⅱ在內皮細胞中促進內皮素基因表現的訊息傳遞圖…...…55
圖3-1 17-β-雌二醇在心臟纖維母細胞中對於血管收縮素Ⅱ促進細胞增生的影 響 …………………………………………………………………….……70
圖3-2 17-β-雌二醇在心臟纖維母細胞中會抑制由血管收縮素Ⅱ促進內皮素基因的表現 ……………………………………………………….…………71
圖3-3 17-β-雌二醇對於血管收縮素Ⅱ增加NADPH氧化酶活性及活性氧形成的影響 …………………………………………………………….………72
圖3-4 17-β-雌二醇對於由血管收縮素Ⅱ增加ERK磷酸化及AP-1 reporter活性的抑制影響 ………………………………………………………….……73
圖4-1 白黎蘆醇在平滑肌細胞中對於血管收縮素Ⅱ促進細胞增生的影響…...87
圖4-2 白黎蘆醇在平滑肌細胞中對於血管收縮素Ⅱ促進內皮素基因表現的抑制影響 …………………………………………………………………….88
圖4-3 白黎蘆醇在平滑肌細胞中對於血管收縮素Ⅱ促進活性氧產生的影響...89
圖4-4 白黎蘆醇在平滑肌細胞中對於血管收縮素Ⅱ增加ERK磷酸化的影響..90
圖4-5 白黎蘆醇以及N-acetyl-cysteine對於血管收縮素Ⅱ及H2O2增加AP-1 reporter活性的影響………………………………………………………91
Ayres S, Tang M, Subbiah MT: Estradiol-17beta as an antioxidant: some distinct features when compared with common fat-soluble antioxidants. J Lab Clin Med 1996; 128(4): 367-375.
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444(7117): 337-342.
Berliner JA, Heinecke JW: The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 1996; 20: 707-727.
Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF: Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens 2001; 10(2): 247-255.
Chen CK, Pace-Asciak CR: Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 1996; 27: 363-366.
Chen L, McNeill JR, Wilson TW, Gopalakrishnan V: Differential effects of phosphoramidon on contractile responses to angiotensin II in rat blood vessels. Br J Pharmacol 1995(a); 114: 1599-1604.
Chen L, McNeill JR, Wilson TW, Gopalakrishnan V: Heterogeneity in vascular smooth muscle responsiveness to angiotensin II. Role of endothelin. Hypertension 1995(b); 26: 83-88.
Cheng CM, Hong HJ, Liu JC, Shih NL, Juan SH, Loh SH, Chan P, Chen JJ, Cheng TH: Crucial role of extracellular signal-regulated kinase pathway in reactive oxygen species-mediated endothelin-1 gene expression induced by endothelin-1 in rat cardiac fibroblasts. Mol Pharmacol 2003; 63: 1002-1011.
Cheng JJ, Chao YJ, Wang DL: Cyclic strain activates redox-sensitive proline-rich tyrosine kinase 2 (PYK2) in endothelial cells. J Biol Chem 2002; 277(50): 48152-48157.
Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ: Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 2003; 42(10): 1845-1854.
Cheng TH, Shih NL, Chen SY, Loh SH, Cheng PY, Tsai CS, Liu SH, Wang DL, Chen JJ: Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol 2001; 33(10): 1805-1814.
Cheng TH, Shih NL, Chen SY, Wang DL, Chen JJ: Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes. Cardiovasc Res 1999; 41(3): 654-662.
Cingolani HE, Villa-Abrille MC, Cornelli M, Nolly A, Ennis IL, Garciarena C, Suburo AM, Torbidoni V, Correa MV, Camilionde-Hurtado MC, Aiello EA: The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension 2006; 47(4): 727-34.
Crabos M, Roth M, Hahn AW, Erne P: Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J Clin Invest 1994; 93(6): 2372-2378.
Deng AY, Dene H, Pravenec M, Rapp JP: Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes. J Clin Invest 1994; 93(6): 2701-2709.
Dhalla NS, Temsah RM, Netticadan T: Role of oxidative stress in cardiovascular disease. J Hypertens 2000; 18: 655-673.
Dubey RK, Gillespie DG, Jackson EK, Keller PJ: 17Beta-estradiol, its metabolites, and progesterone inhibit cardiac fibroblast growth. Hypertension 1998; 31(1 Pt 2): 522-528.
Dubey RK, Gillespie DG, Mi Z, Jackson EK: Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts. Circulation 1997; 96: 2656-2666.
d''Uscio LV, Shaw S, Barton M, Luscher TF: Losartan but not verapamil inhibits angiotensin II-induced tissue endothelin-1 increase: role of blood pressure and endothelial function. Hypertension 1998; 31: 1305-1310.
Eguchi S, Matsumoto T, Motley ED, Utsunomiya H, Inagami T: Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. J Biol Chem 1996; 271: 14169-14175.
Fitzpatrick DF, Hirschfield SL, Coffey RG: Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 1993; 265: H774-H778.
Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M: Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest 1995; 96(2): 1059-1065.
Gardin JM, Wagenknecht LE, Anton-Culver H, Flack J, Gidding S, Kurosaki T, Wong ND, Manolio TA: Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. The CARDIA study. Coronary Artery Risk Development in Young Adults. Circulation 1995; 92(3): 380-387.
German JB, Walzem RL: The health benefits of wine. Annu Rev Nutr 2000; 20: 561-593.
Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS: Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 1998; 40(2): 352-363.
Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M: Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000(a); 20(10): 2175-2183.
Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000(b); 86: 494-501.
Griendling KK, Tsuda T, Alexader RW: Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem 1989; 264: 8237-8240.
Grohe C, Kahlert S, Lobbert K, van Eickels M, Stimple M, Vetter H, Neyses L: Effects of moexiprilat on oestrogen-stimulated cardiac fibroblast growth. Br J Pharmacol 1997; 121(7): 1350-1354.
Grunfeld S, Hamilton CA, Mesaros S, McClain SW, Dominiczak AF, Bohr DF, Malinsk T: Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension 1995; 26: 854-857.
Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ: Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 1996; 271: 4138-4142.
Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Buhler FR: Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regul 1990; 1(9): 649-659.
Haider UG, Sorescu D, Griendling KK, Vollmar AM, Dirsch VM: Resveratrol suppresses angiotensin II-induced Akt/protein kinase B and p70 S6 kinase phosphorylation and subsequent hypertrophy in rat aortic smooth muscle cells. Mol Pharmacol 2002; 62: 772-777.
Hayward CS, Webb CM, Collins P: Effect of sex hormones on cardiac mass. Lancet 2001; 357(9265): 1354-1356.
Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, Lamotte F, Gaziano JM, Ridker PM, Willett W, Peto R: Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 1996; 334: 1145-1149.
Herizi A, Jover B, Bouriquet N, Mimran A: Prevention of the cardiovascular and renal effects of angiotensin II by endothelin blockade. Hypertension 1998; 31: 10-14.
Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M, Hori M: Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 2002; 105: 509-515.
Hong HJ, Chan P, Liu JC, Juan SH, Huang MT, Lin JG, Cheng TH: Angiotensin II induces endothelin-1 gene expression via extracellular signal-regulated kinase pathway in rat aortic smooth muscle cells. Cardiovasc Res 2004(a); 61: 159-168.
Hong HJ, Liu JC, Chan P, Juan SH, Loh SH, Lin JG, Cheng TH: 17beta-estradiol downregulates angiotensin-II-induced endothelin-1 gene expression in rat aortic smooth muscle cells. J Biomed Sci 2004(b); 11: 27-36.
Hong MK, Romm PA, Reagan K, Green CE, Rackley CE: Effects of estrogen replacement therapy on serum lipid values and angiographically defined coronary artery disease in postmenopausal women. Am J Cardiol 1992; 69(3): 176-178.
Hsu YH, Chen JJ, Chang NC, Chen CH, Liu JC, Chen TH, Jeng CJ, Chao HH, Cheng TH: Role of reactive oxygen species-sensitive extracellular signal-regulated kinase pathway in angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. J Vasc Res 2004; 41: 64-74.
Hung LM, Su M, Chu WK, Chiao CW, Chan WF, Chen JK: The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. Br J Pharmacol 2002; 135: 1627-1633.
Ikram H: The renin-angiotensin-aldosterone system and cardiac ischaemia. Heart 1996; 76(3): 60-67.
Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Murumo F, Hiroe M: Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 1993; 92: 398-403.
Jang JH, Surh YJ: Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat Res 2001; 496: 181-190.
Juan SH, Chen JJ, Chen CH, Lin H, Cheng CF, Liu JC, Hsieh MH, Chen YL, Chao HH, Chen TH, Chan P, Cheng TH: 17{beta}-Estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287: H1254-H1261.
Kawana M, Lee ME, Quertermous EE, Quertermous T: Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol Cell Biol 1995; 15: 4225-4231.
Khatta M, Alexander BS, Krichten CM, Fisher ML, Freudenberger R, Robinson SW, Gottlieb SS: The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med 2000; 132(8): 636-640.
Krishnamurthi K, Verbalis JG, Zheng W, Wu Z, Clerch LB, Sandberg K: Estrogen regulates angiotensin AT1 receptor expression via cytosolic proteins that bind to the 5'' leader sequence of the receptor mRNA. Endocrinology 1999; 140(11): 5435-5438.
Langenstroer P, Pieper GM: Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am J Physiol 1992; 263: H257-H265.
Laskey WK, Kussmaul WG: Aterial wave reflection in heart failure. Circulation 1987; 75: 711-22.
Laufs U, Adam O, Strehlow K, Wassmann S, Konkol C, Laufs K, Schmidt W, Bohm M, Nickenig G: Down-regulation of Rac-1 GTPase by Estrogen. J Biol Chem 2003; 278(8): 5956-5962.
Lee HW, Eghbali-Webb M: Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor- and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol 1998; 30(7): 1359-1368.
Lee ME, Bloch KD, Clifford JA, Quertermous T: Functional analysis of the endothelin-1 gene promoter. Evidence for an endothelial cell-specific cis-acting sequence. J Biol Chem 1990; 265: 10446-10450.
Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322(22): 1561-1566.
Liu JC, Chen JJ, Chan P, Cheng CF, Cheng TH: Inhibition of cyclic strain-induced endothelin-1 gene expression by resveratrol. Hypertension 2003; 42: 1198-1205.
Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold MO, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR: Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 2005; 293: 1338–1347.
Lou H, Danelisen I, Singal PK: Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2005; 288(4): H1925-30.
Mendelsohn ME, Karas RH: The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999; 340(23): 1801-1811.
Mercier I, Colombo F, Mader S, Calderone A: Ovarian hormones induce TGF-beta(3) and fibronectin mRNAs but exhibit a disparate action on cardiac fibroblast proliferation. Cardiovasc Res 2002; 53(3): 728-739.
Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, Muller DN, Fiebeler A, Ganten U, Ganten D, Luft FC: Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 2001; 37(Part 2): 414-418.
Molavi B, Mehta JL: Oxidative stress in cardiovascular disease: molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol 2004; 19(5): 488-493.
Moreau P, d''Uscio LV, Shaw S, Takase H, Barton M, Luscher TF: Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor antagonist. Circulation 1997; 96: 1593-1597.
Mukamal KJ, Conigrave KM, Mittleman MA, Camargo CA Jr., Stampfer MJ, Willett WC, Rimm EB: Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N Engl J Med 2003; 348: 109-118.
Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M: Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998; 98: 794-799.
Nickenig G, Strehlow K, Wassmann S, Baumer AT, Albory K, Sauer H, Bohm M: Differential effects of estrogen and progesterone on AT(1) receptor gene expression in vascular smooth muscle cells. Circulation 2000; 102(15): 1828-1833.
Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Grohe C: 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 1999; 43(3): 666-674.
Ohara Y, Peterson TE, Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546-2551.
Olas B, Wachowicz B: Resveratrol and vitamin C as antioxidants in blood platelets. Thromb Res 2002; 106: 143-148.
Orallo F, Alvarez E, Camina M, Leiro JM, Gomez E, Fernandez P: The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol 2002; 61: 294-302.
Oriji GK: Angiotensin II-induced ET and PGI2 release in rat aortic endothelial cells is mediated by PKC. Prostaglandins Leukot Essent Fatty Acids 1999; 61: 113-117.
Ortiz MC, Manriquez MC, Romero JC, Juncos LA: Antioxidants block angiotensin II-induced increases in blood pressure and endothelin. Hypertension 2001; 38: 655-659.
Paul M, Zintz M, Bocker W, Dyer M: Characterization and functional analysis of the rat endothelin-1 promoter. Hypertension 1995; 25: 683-693.
Peng J, Gurantz D, Tran V, Cowling RT, Greenberg BH: Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res 2002; 91(12): 1119-1126.
Pervaiz S: Resveratrol: from grapevines to mammalian biology. FASEB J 2003; 17(14): 1975-1985.
Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK: The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 1999; 27: 160-169.
Rifici VA, Khachadurian AK: The inhibition of low-density lipoprotein oxidation by 17-beta estradiol. Metabolism 1992; 41(10): 1110-1114.
Rosano GM, Vitale C, Fini M: Hormone replacement therapy and cardioprotection: what is good and what is bad for the cardiovascular system? Ann N Y Acad Sci. 2006; 1092: 341-348.
Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809.
Rossi GP, Sacchetto A, Cesari M, Pessina AC: Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc Res 1999; 43: 300-307.
Rueckschloss U, Quinn MT, Holtz J, Morawietz H: Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2002; 22: 1845-1851.
Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Koyasu S, Matsui H, Yamauchi-Takihara K, Harada M, Saito Y, Ogawa S: ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 2001; 89(8): 661-669.
Sato M, Maulik N, Das DK: Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci 2002; 957: 122-135.
Sen CK, Packer L: Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 2000; 72: 653S-669S.
Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK: Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 2002; 91: 406-413.
Shih NL, Cheng TH, Loh SH, Cheng PY, Wang DL, Chen YS, Liu SH, Liew CC, Chen JJ: Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 2001; 283: 143-148.
Short SM, Boyer JL, Juliano RL: Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J Biol Chem 2000; 275: 12970-12977.
Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, Forti L, Pagnoni UM, Albini A, Prosperi E, Vannini V: Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 2001; 276: 22586-22594.
Strehlow K, Rotter S, Wassmann S, Adam O, Grohe C, Laufs K, Bohm M, Nickenig G: Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003; 93(2): 170-177.
Sugden PH, Bogoyevitch MA: Endothelin-1-dependent signaling pathways in the myocardium. Trends Cardiovasc Med 1996; 6: 87-94.
Sun AY, Simonyi A, Sun GY: The "French Paradox" and beyond: neuroprotective effects of polyphenols. Free Radic Biol Med 2002; 32: 314-318.
Sun Y, Weber KT: Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 1998; 30: 3-8.
Sung CP, Arleth AJ, Storer BL, Ohlstein EH: Angiotensin type 1 receptors mediate smooth muscle proliferation and endothelin biosynthesis in rat vascular smooth muscle. J Pharmacol Exp Ther 1994; 271: 429-437.
Tanaka K, Honda M, Takabatake T: Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 2001; 37(2): 676-685.
Taniyama Y, Griendling KK: Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42(6): 1075-1081.
Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B: Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 1989; 264: 526-530.
Touyz RM: Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 2003; 12(2): 165-174.
Touyz RM: Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res 2004; 37: 1263-1273.
Touyz RM, Deng LY, He G, Wu XH, Schiffrin: Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. J Hypertens 1999; 17: 907-916.
Touyz RM, Schiffrin EL: Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 2001; 19: 1245-1254.
van Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA: 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001; 104(12): 1419-1423.
Vaughan D: Pharmacology of ACE inhibitors versus AT1 blockers. Can J Cardiol 2000; 16( Suppl E) : 36E-40E.
Wang D, Yu X, Brecher P: Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J Biol Chem 1999; 274: 24342-24348.
Wang DL, Tang CC, Wung BS, Chen HH, Hung MS, Wang JJ: Cyclical strain increases endothelin-1 secretion and gene expression in human endothelial cells. Biochem Biophys Res Commun 1993; 195: 1050-1056.
Weber KT: Extracellular matrix remodeling in heart failure. A role for De Novo angiotensin II generation. Circulation 1997; 96: 4065-4082.
Weber KT, Brilla CG: Patholigical hypertrophy and cardiac interstitium: Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849-1865.
Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL: Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 1997; 81: 1-7.
Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S: Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 2002; 416(6878): 334-338.
Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P: Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study investigation. N Engl J Med 2000; 342: 154-160.
Zhang C, Hein TW, Wang W, Kuo L: Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res 2003; 92: 322-329.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top