跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉欣怡
研究生(外文):Hsin-I Yeh
論文名稱:人參及人參皂苷於純系小鼠之馬兜鈴酸腎炎模型的藥效評估
論文名稱(外文):Effects of ginseng and ginsenosides on aristolochic acid-induced nephropathy in inbred mice
指導教授:陳世銘陳世銘引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:100
中文關鍵詞:馬兜鈴酸腎病變人參人參皂苷ginsenoside Rb1RdRg1乙型轉型生長因子基質金屬蛋白分解酶肝細胞生長因子
外文關鍵詞:Aristolochic acid nephropathy (AAN)ginsengginsenoside Rb1RdRg1TGF-β (transforming growth factor-β)MMP-9 (matrix metalloproteinase-9)HGF (Hepatocyte Growth Factor)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
馬兜鈴酸 (aristolochic acid, AA) 在中草藥引起的腎病變中扮演重要的角色。本研究的目的為藉由投予AA引起馬兜鈴酸腎病變 (aristolochic acid nephropathy, AAN),以評估人參 (ginseng extrat, GE) 及其成份ginsenoside Rb1、Rd及Rg1對AAN的改善效果。
給予純系小鼠C3H/He (6 week-old male) 3.0 μg/mL AA當飲用水,連續56天,之後治療組分別經口投予GE (125、250、500 mg/kg)或純成份ginsenoside (Rb1、Rd、Rg1) 5 mg/kg連續14天,對照組給予等量蒸餾水,Normal組則全程給予蒸餾水。
藉由測定尿蛋白,尿中N-acetyl-beta-D-glucosaminidase (NAG) 與血中blood urea nitrogen (BUN) 及creatinine,以評估小鼠腎功能;腎組織使用PAS染色觀察病理組織改變,並進行免疫螢光染色 (TGF-β,MMP-9,HGF),以辨識損傷部位之特異性抗原。
實驗結果顯示,投予GE 250 mg/kg,ginsenoside Rb1, Rg1之治療組的尿蛋白、NAG、BUN、SCr及血糖值都有降低;組織學及免疫螢光染色觀察發現腎組織損傷的情形皆有緩解。根據以上結果發現,人參濃縮劑部分,GE 250的療效最好,其次依序為GE 500 及GE 125。人參皂苷部分,有效程度依序為Rg1、Rb1、Rd。
Aristolochic acid (AA) has been demonstrated to play a crucial role in Chinese herbs nephropathy. The purpose of this study was to evaluate the therapeutic effect of ginseng extrat (GE) and its active component, ginsenoside (GS), on AA-induced nephropathy.
AA was dissolved in distilled water (3μg/ml) as drinking water to C3H/He mice (6 week-old male) for 56 days. The treatment groups were administered orally with GE (125, 250, 500 mg/kg) or ginsenosides (Rb1, Rd, Rg1 5 mg/kg) once daily for 14 days. The control group was administered with distilled water. The normal group was only administered with distilled water throughout the experiment.
Urine protein (UP), urine N-acetyl-beta-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine were determined to evaluate renal function. Renal tissues were served to histological examination (PAS stain and immunofluorescence). The antibodies, including TGF-β (transforming growth factor-β), MMP-9 (matrix metalloproteinase-9), HGF (hepatocyte growth factor), were chosen to recognize the specific antigens in injury sites.
Compared with the control group, urine protein, NAG, BUN, serum creatinine and blood glucose were decreased in the GE 250 mg/kg, ginsenoside Rb1 and Rg1 treatment groups. In histological examination, we observed the alleviation in all treatment groups. According to the study, the effect of GE 250 is superior to the other GE-treated groups and ginsenoside Rg1 has the best effect among all the GS-treated groups.
目 錄 I
圖 目 錄 VI
表 目 錄 VIII
縮 寫 表 i
中 文 摘 要 ii
英 文 摘 要 iii
第一章 緒言 1
第二章 文獻回顧 2
第一節 馬兜鈴酸腎病變的由來 2
第二節 馬兜鈴酸之基本特性 2
2.1 用途 2
2.2 含馬兜鈴酸的生藥及使用現況 3
2.3 結構與特性 4
2.4 馬兜鈴酸的代謝 5
2.5 馬兜鈴酸的致癌機轉 7
第三節 馬兜鈴酸腎病變 (Aristolochic acid nephropathy, AAN).. 10
3.1 臨床表徵 10
3.2 病理特徵 10
3.3 鑑別診斷 11
3.4 致病機轉 13
3.5 藥物治療 13
第四節 馬兜鈴酸腎病變的實驗模型 14
4.1 馬兜鈴酸的急性腎毒性 14
4.2 馬兜鈴酸的慢性腎毒性 15
第五節 腎小管間質性纖維化 17
5.1 TGF-β 21
5.2 MMPs 24
5.3 Hepatocyte growth factor (HGF) 27
第六節 人參 30
6.1 生藥學的考察 30
6.2 人參的藥效研究 31
第七節 人參皂苷 (Ginsenoside Rb1, Rd, Rg1) 33
7.1 人參皂苷之結構特性 33
7.2 人參皂苷Rb1的藥效學研究 34
7.3 人參皂苷Rd的藥效學研究 35
7.4 人參皂苷Rg1的藥效學研究 37
第三章 研究目的 38
第四章 材料與方法 39
第一節 人參濃縮劑在AAN之藥效評估 39
1.1實驗動物 39
1.2實驗藥物 39
1.3實驗設計 39
1.4尿液收集 41
1.5動物犧牲法、血液及組織切片製作 41
1.6尿蛋白、NAG含量測定 42
1.7血清中BUN及Creatinine的含量測定 42
1.8血液中血糖值的含量測定 42
1.9 Periodoic Acid Schiff’s (PAS) stain組織染色 43
1.10組織損傷程度的量化 43
1.11免疫螢光染色 (Immunofluorescence) 44
1.12統計方法 44
第二節 Ginsenoside Rb1, Rd, Rg1在AAN之藥效評估 46
2.1實驗動物 46
2.2實驗藥物 46
2.3實驗設計 46
2.4尿液收集 48
2.5動物犧牲法、血液及組織切片製作 48
2.6尿蛋白、NAG含量測定 48
2.7血清中BUN及Creatinine的含量測定 48
2.8血液中血糖值的含量測定 48
2.9 PAS組織染色 48
2.10組織損傷程度的量化 48
2.11免疫螢光染色 48
2.12統計方法 48
第五章 結果 49
第一節 人參濃縮劑對慢性AAN的藥效評估 49
1.1尿蛋白、NAG含量分析 49
1.2血清中BUN分析 52
1.3血清中Creatinine分析 52
1.4血液中血糖分析 52
1.5組織病理PAS染色 54
1.6組織損傷量化分析 54
1.7免疫螢光染色及量化分析 57
第二節Ginsenoside Rb1,Rd,Rg1對慢性AAN的藥效評估 61
2.1尿蛋白、NAG含量分析 61
2.2血清中BUN分析 64
2.3血清中Creatinine分析 64
2.4血液中血糖分析 64
2.5組織病理PAS染色 66
2.6組織損傷量化分析 66
2.7免疫螢光染色及量化分析 69
第六章 討論 73
第七章 結論 77
參考文獻 78
1.Vanherweghem JL, Depierreux M, Tielemans C, et al.
Rapidly progressive interstitial renal fibrosis in young
women: association with slimming regimen including
Chinese herbs. Lancet 1993; 341(8842): 387-91.
2.Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as
a probable human cancer hazard in herbal remedies: a
review. Mutagenesis 2002; 17(4):265-77.
3.Lee S, Lee T, Lee B, et al. Fanconi''s syndrome and
subsequent progressive renal failure caused by a Chinese
herb containing aristolochic acid. Nephrology 2004; 9
(3):126-9.
4.Tsai CS, Chen YC, Chen HH, et al. An unusual cause of
hypokalemic paralysis: aristolochic acid nephropathy
with Fanconi syndrome. American Journal of the Medical
Sciences 2005; 330(3):153-5.
5.Lo SH, Wong KS, Arlt VM, et al. Detection of Herba
Aristolochia Mollissemae in a patient with unexplained
nephropathy. American Journal of Kidney Diseases 2005; 45
(2):407-10.
6.Hong YT, Fu LS, Chung LH, et al. Fanconi''s syndrome,
interstitial fibrosis and renal failure by aristolochic
acid in Chinese herbs. Pediatric Nephrology 2006; 21
(4):577-9.
7.Laing C, Hamour S, Sheaff M, et al. Chinese herbal
uropathy and nephropathy. Lancet 2006; 368(9532):338.
8.Vanhaelen M, Vanhaelen-Fastre R, But P, et al
Identification of aristolochic acid in Chinese herbs.
Lancet 1994; 343(8890):174.
9.Cosyns JP. When is "aristolochic acid nephropathy" more
accurate than "Chinese herbs nephropathy"? Kidney
International 2002; 61(3):1178.
10.Rucker VG, Chung BS. Aristolochic acids from
Aristolochia manshuriensis. Planta Medica 1975; 27
(1):68-71.
11.Cosyns JP. Aristolochic acid and ''Chinese herbs
nephropathy'': a review of the evidence to date. Drug
Safety 2003; 26(1):33-48.
12.De Broe ME, De Broe ME. On a nephrotoxic and
carcinogenic slimming regimen. American Journal of
Kidney Diseases 1999; 33(6): 1171-3.
13.Mengs U. On the histopathogenesis of rat forestomach
carcinoma caused by aristolochic acid. Archives of
Toxicology 1983; 52(3):209-20.
14.Administration USFaD.
http://www.cfsan.fda.gov/~dms/ds-botl1.html
15.http://www.ccmp.gov.tw/public/public.aspselno=561&relno=
561&level=C
16.Balachandran P, Wei F, Lin RC, et al. Structure
activity relationships of aristolochic acid analogues:
Toxicity in cultured renal epithelial cells. Kidney
International 2005; 67(5): 1797-805.
17.Krumbiegel G, Hallensleben J, Mennicke WH, et al.
Studies on the metabolism of aristolochic acids I and
II. Xenobiotica 1987; 17(8):981-91.
18.Schmeiser HH, Janssen JW, Lyons J, et al. Aristolochic
acid activates ras genes in rat tumors at
deoxyadenosine residues. Cancer Research 1990; 50
(17):5464-9.
19.Kabanda A, Jadoul M, Lauwerys R, et al. Low molecular
weight proteinuria in Chinese herbs nephropathy. Kidney
International 1995; 48(5):1571-6.
20.Reginster F, Jadoul M, van Ypersele de Strihou C, et
al. Chinese herbs nephropathy presentation, natural
history and fate after transplantation. Nephrology
Dialysis Transplantation 1997; 12(1):81-6.
21.Martinez MC, Nortier J, Vereerstraeten P, et al.
Progression rate of Chinese herb nephropathy: impact of
Aristolochia fangchi ingested dose. Nephrology Dialysis
Transplantation 2002; 17(3):408-12.
22.Depierreux M, Van Damme B, Vanden Houte K, et al.
Pathologic aspects of a newly described nephropathy
related to the prolonged use of Chinese herbs. American
Journal of Kidney Diseases 1994; 24(2):172-80.
23.Lebeau C, Debelle FD, Arlt VM, et al. Early proximal
tubule injury in experimental aristolochic acid
nephropathy: functional and histological studies.
Nephrology Dialysis Transplantation 2005; 20(11):2321-
32.
24.Van Ypersele de Strihou C, Vanherweghem JL. The tragic
paradigm of Chinese herbs nephropathy. Nephrology
Dialysis Transplantation 1995; 10(2):157-60.
25.De Broe ME, Elseviers MM. Analgesic nephropathy. New
England Journal of Medicine 1998; 338(7):446-52.
26.Stefanović V. Analgesic nephropathy, Balkan endemic
nephropathy and Chinese herbs nephropathy: Separate
tubulointerstitial kidney diseases associated with
urothelial malignancy. Facta Universitatis Series:
Medicine and Biology 2002; 9(1):1-6.
27.Elseviers MM, De Broe ME. Combination analgesic
involvement in the pathogenesis of analgesic
nephropathy: the European perspective. American Journal
of Kidney Diseases 1996; 28(1 Suppl 1):S48-55.
28.Stefanovi V, Stefanovi V. Balkan endemic nephropathy: a
need for novel aetiological approaches. Qjm:Monthly
Journal of The Association of Physicians 1998; 91
(7):457-63.
29.Stefanović V. Analgesic nephropathy, Balkan endemic
nephropathy and Chinese herbs nephropathy: Separate
tubulointerstitial kidney diseases associated with
urothelial malignancy. Facta Universitatis Series:
Medicine and Biology 2002; 9(1):1-6.
30.Cosyns JP, Dehoux JP, Guiot Y, et al. Chronic
aristolochic acid toxicity in rabbits: a model of
Chinese herbs nephropathy. Kidney International 2001; 59
(6):2164-73.
31.Schmeiser HH, Bieler CA, Wiessler M, et al. Detection
of DNA adducts formed by aristolochic acid in renal
tissue from patients with Chinese herbs nephropathy.
Cancer Research 1996; 56(9):2025-8.
32.Van Vleet TR, Schnellmann RG. Toxic nephropathy:
environmental chemicals. Seminars in Nephrology 2003; 23
(5):500-8.
33.Vanherweghem JL, Abramowicz D, Tielemans C, et al.
Effects of steroids on the progression of renalfailure
in chronic interstitial renal fibrosis: a pilot study
in Chinese herbs nephropathy. American Journal of
Kidney Diseases 1996; 27(2):209-15.
34.Cosyns JP, Jadoul M, Squifflet JP, et al. Chinese herbs
nephropathy: a clue to Balkan endemic nephropathy?
Kidney International 1994; 45(6):1680-8.
35.Li Y, Liu Z, Guo X, et al. Aristolochic acid I-induced
DNA damage and cell cycle arrest in renal tubular
epithelial cells in vitro. Archives of Toxicology 2006;
80(8):524-32.
36.Yang L, LI X, Wang H. Possible mechanisms explaining
the tendency towards interstitial fibrosis in
aristolochic acid-induced acute tubular necrosis.
Nephrology Dialysis Transplantation 2007; 22(2):445-56.
37.Vanherweghem JL, Abramowicz D, Tielemans C, et al.
Effects of steroids on the progression of renal failure
in chronic interstitial renal fibrosis: a pilot study
in Chinese herbs nephropathy. American Journal of
Kidney Diseases 1996; 27(2):209-15.
38.Debelle FD, Nortier JL, Husson CP, et al. The renin-
angiotensin system blockade does not prevent renal
interstitial fibrosis induced by aristolochic acids.
Kidney International 2004; 66(5):1815-25.
39.Zhu S, Liu J, Chen L, et al. Chemopreventive effect of
five drugs on renal interstitial fibrosis induced by an
aristolochic acid-containing chinese herb in rats.
American Journal of Nephrology 2005; 25(1):23-9.
40.Jackson L, Kofman S, Weiss A, et al. ARISTOLOCHIC ACID
(NSC-50413): PHASE I CLINICAL STUDY. Cancer
Chemotherapy Reports 1964; 42:35-7.
41.Mengs U. Acute toxicity of aristolochic acid in
rodents. Archives of Toxicology 1987; 59(5):328-31.
42.Mengs U, Stotzem CD. Renal toxicity of aristolochic
acid in rats as an example of nephrotoxicity testing in
routine toxicology. Archives of Toxicology 1993; 67
(5):307-11.
43.Sato N, Takahashi D, Chen SM. Acute nephrotoxicity of
aristolochic acids in mice. Journal of Pharmacy &
Pharmacology 2004; 56(2):221-9.
44.Nouwen EJ, Zhu MQ, Savin M. Induction of apoptosis in
the rat kidney by aristolochic acid I. In: ASN Annual
Meeting; 1995; 1002.
45.Zheng F, Zhang X, Huang Q. Establishment of model of
aristolochic acid-induced chronic renal interstitial
fibrosis in rats. Chung-Hua i Hsueh Tsa Chih 2001; 81
(18):1095-100.
46.Debelle FD, Nortier JL, De Prez EG, et al. Aristolochic
acids induce chronic renal failure with interstitial
fibrosis in salt-depleted rats. Journal of the American
Society of Nephrology 2002; 13(2):431-6.
47.Liu Y, Liu Y. Renal fibrosis: new insights into the
pathogenesis and therapeutics. Kidney International
2006; 69(2):213-7.
48.Weber KT, Weber KT. Fibrosis, a common pathway to organ
failure: angiotensin II and tissue repair. Seminars in
Nephrology 1997; 17(5):467-91.
49.Eddy AA. Molecular basis of renal fibrosis. Pediatric
Nephrology 2000; 15(3-4):290-301.
50.Wang SN, Lapage J, Hirschberg R. Glomerular
ultrafiltration and apical tubular action of IGF-I, TGF-
beta, and HGF in nephrotic syndrome. Kidney
International 1999; 56:1247-51.
51.Okada H, Strutz F, Danoff TM, et al. Possible
pathogenesis of renal fibrosis. Kidney International -
Supplement 1996; 54:S37-8.
52.Bottinger EP, Bitzer M, Bottinger EP, et al. TGF-beta
signaling in renal disease. Journal of the American
Society of Nephrology 2002; 13(10):2600-10.
53.Blobe GC, Schiemann WP, Lodish HF, et al. Role of
transforming growth factor beta in human disease. New
England Journal of Medicine 2000; 342(18):1350-8.
54.Border WA, Noble NA. Transforming growth factor beta in
tissue fibrosis. England Journal of Medicine 1994; 331
(19):1286-92.
55.Wang W, Koka V, Lan HY, et al. Transforming growth
factor-beta and Smad signalling in kidney diseases.
Nephrology 2005; 10(1):48-56.
56.Branton MH, Kopp JB, Branton MH, et al. TGF-beta and
fibrosis. Microbes & Infection 1999; 1(15):1349-65.
57.Border WA, Noble NA. TGF-beta in kidney fibrosis: a
target for gene therapy. Kidney International 1997; 51
(5):1388-96.
58.Haas C, Gleason B, Lin S, et al. Matrix
metalloproteinases in renal development. Connective
Tissue Research 2004; 45(2):73-85.
59.Parks WC, Wilson CL, Lopez-Boado YS. Matrix
metalloproteinases as modulators of inflammation and
innate immunity. Nature Reviews Immunology 2004; 4
(8):617-29.
60.Liu Y. Hepatocyte growth factor in kidney fibrosis:
therapeutic potential and mechanisms of action.
American Journal of Physiology - Renal Physiology 2004;
287(1):F7-16.
61.Matsumoto K, Nakamura T. Emerging multipotent aspects
of hepatocyte growth factor. Journal of Biochemistry
1996; 119(4):591-600.
62.Liu Y. Hepatocyte growth factor and the kidney. Current
Opinion in Nephrology & Hypertension 2002; 11(1):23-30.
63.Liu Y, Yang J. Hepatocyte growth factor: new arsenal in
the fights against renal fibrosis? Kidney International
2006; 70(2):238-40.
64.Matsumoto K, Nakamura T. Hepatocyte growth factor:
renotropic role and potential therapeutics for renal
diseases. Kidney International 2001; 59(6):2023-38.
65.賴榮祥.原色生藥學 2000.
66.Yun TK. Panax ginseng--a non-organ-specific cancer
preventive? Lancet Oncology 2001; 2(1):49-55.
67.Baek SH, Piao XL, Lee UJ, et al. Reduction of Cisplatin-
induced nephrotoxicity by ginsenosides isolated from
processed ginseng in cultured renal tubular cells.
Biological & Pharmaceutical Bulletin 2006; 29(10):2051-
5.
68.Chang YS, Seo EK, Gyllenhaal C, et al. Panax ginseng: a
role in cancer therapy? Integrative Cancer Therapies
2003; 2(1):13-33.
69.Chan TW, But PP, Cheng SW, et al. Differentiation and
authentication of Panax ginseng, Panax quinquefolius,
and ginseng products by using HPLC/MS.[erratum appears
in Anal Chem 2000 May 15;72(10):2329]. Analytical
Chemistry 2000; 72(6):1281-7.
70.Nam MH, Kim SI, Liu JR, et al. Proteomic analysis of
Korean ginseng (Panax ginseng C.A. Meyer). Journal of
Chromatography B: Analytical Technologies in the
Biomedical & Life Sciences 2005; 815(1-2):147-55.
71.Gillis CN, Gillis CN. Panax ginseng pharmacology: a
nitric oxide link? Biochemical Pharmacology 1997; 54
(1):1-8.
72.Xie JT, McHendale S, Yuan CS, et al. Ginseng and
diabetes. American Journal of Chinese Medicine 2005; 33
(3):397-404.
73.Kiefer D, Pantuso T, Kiefer D, et al. Panax ginseng.
American Family Physician 2003; 68(8):1539-42.
74.Glenn MB, Lexell J, Glenn MB, et al. Ginseng. Journal
of Head Trauma Rehabilitation 2003; 18(2):196-200.
75.Kitts D, Hu C, Kitts D, et al. Efficacy and safety of
ginseng. Public Health Nutrition 2000; 3(4A):473-85.
76.Yu JY, Jin YR, Lee JJ, et al. Antiplatelet and
antithrombotic activities of Korean Red Ginseng.
Archives of Pharmacal Research 2006; 29(10): 898-903.
77.Hattori T, Nagamatsu T, Ito M, et al. Studies on
antinephritic effect of TJ-8014, a new Japanese herbal
medicine, and its mechanisms (1): Effects on original-
type anti-GBM nephritis in rats and platelet
aggregation. Japanese Journal of Pharmacology 1989; 50
(4):477-85.
78.Han SW, Kim H. Ginsenosides stimulate endogenous
production of nitric oxide in rat kidney. International
Journal of Biochemistry & Cell Biology 1996; 28(5):573-
80.
79.Hiai S, Yokoyama H, Oura H, et al. Stimulation of
pituitary- adrenocortical system by ginseng saponin.
Endocrinologia Japonica 1979; 26(6):661-5.
80.Zuin M, Battezzati PM, Camisasca M, et al. Effects of a
preparation containing a standardized ginseng extract
combined with trace elements and multivitamins against
hepatotoxin-induced chronic liver disease in the
elderly. Journal of International Medical Research
1987; 15(5): 276-81.
81.Sotaniemi EA, Haapakoski E, Rautio A, et al. Ginseng
therapy in non-insulin-dependent diabetic patients.
Diabetes Care 1995; 18(10):1373-5.
82.Kim SH, Park KS. Effects of Panax ginseng extract on
lipid metabolism in humans. Pharmacological Research
2003; 48(5): 511-3.
83.Huang KC. The Pharmacology of Chinese Herbs. 1999.
84.Ong YC, Yong EL. Panax (ginseng)--panacea or placebo?
Molecular and cellular basis of its pharmacological
activity. Annals of the Academy of Medicine, Singapore
2000; 29(1):42-6.
85.Park EK, Shin YW, Lee HU, et al. Inhibitory effect of
ginsenoside Rb1 and compound K on NO and prostaglandin
E2 biosyntheses of RAW264.7 cells induced by
lipopolysaccharide. Biological & Pharmaceutical
Bulletin 2005; 28(4):652-6.
86.Zhang HS, Wang SQ, Zhang H-S, et al. Ginsenoside Rg1
inhibits tumor necrosis factor-alpha (TNF-alpha)-
induced human arterial smooth muscle cells (HASMCs)
proliferation. Journal of Cellular Biochemistry 2006; 98
(6):1471-81.
87.Park JK, Namgung U, Lee CJ, et al. Calcium-independent
CaMKII activity is involved in ginsenoside Rb1-mediated
neuronal recovery after hypoxic damage. Life Sciences
2005; 76(9):1013-25.
88.Radad K, Gille G, Moldzio R, et al. Ginsenosides Rb1
and Rg1 effects on mesencephalic dopaminergic cells
stressed with glutamate. Brain Research 2004; 1021
(1):41-53.
89.Radad K, Gille G, Moldzio R, et al. Ginsenosides Rb1
and Rg1 effects on survival and neurite growth of MPP+-
affected mesencephalic dopaminergic cells. Journal of
Neural Transmission 2004; 111(1):37-45.
90.Mook-Jung I, Hong HS, Boo JH, et al. Ginsenoside Rb1
and Rg1 improve spatial learning and increase
hippocampal synaptophysin level in mice. Journal of
Neuroscience Research 2001; 63(6):509-15.
91.Ohashi R, Yan S, Mu H, et al. Effects of homocysteine
and ginsenoside Rb1 on endothelial proliferation and
superoxide anion production. Journal of Surgical
Research 2006; 133(2):89-94.
92.Lee HU, Bae EA, Han MJ, et al. Hepatoprotective effect
of ginsenoside Rb1 and compound K on tert-butyl
hydroperoxide-induced liver injury. Liver International
2005; 25(5):1069-73.
93.Hasegawa H, Uchiyama M, Hasegawa H, et al.
Antimetastatic efficacy of orally administered
ginsenoside Rb1 in dependence on intestinal bacterial
hydrolyzing potential and significance of treatment
with an active bacterial metabolite. Planta Medica
1998; 64(8):696-700.
94.Cheng Y, Shen LH, Zhang JT, et al. Anti-amnestic and
anti-aging effects of ginsenoside Rg1 and Rb1 and its
mechanism of action. Acta Pharmacologica Sinica 2005; 26
(2):143-9.
95.Park KH, Shin HJ, Song YB, et al. Possible role of
ginsenoside Rb1 on regulation of rat liver
triglycerides. Biological & Pharmaceutical Bulletin
2002; 25(4):457-60.
96.Smolinski AT, Pestka JJ, Smolinski AT, et al.
Modulation of lipopolysaccharide-induced
proinflammatory cytokine production in vitro and in
vivo by the herbal constituents apigenin (chamomile),
ginsenoside Rb(1) (ginseng) and parthenolide
(feverfew). Food & Chemical Toxicology 2003; 41
(10):1381-90.
97.Joo SS, Won TJ, Lee DI, et al. Reciprocal activity of
ginsenosides in the production of proinflammatory
repertoire, and their potential roles in
neuroprotection in vivo. Planta Medica 2005; 71(5): 476-
81.
98.Yokozawa T, Iwano M, Dohi K, et al. Inhibitory effects
of ginseng on proliferation of cultured mouse mesangial
cells. Nippon Jinzo Gakkai Shi Japanese Journal of
Nephrology 1994; 36(1):13-8.
99.Choi SS, Lee JK, Han EJ, et al. Effect of ginsenoside
Rd on nitric oxide system induced by lipopolysaccharide
plus TNF-alpha in C6 rat glioma cells. Archives of
Pharmacal Research 2003; 26(5):375-82.
100.Lee JK, Choi SS, Lee HK, et al. Effects of ginsenoside
Rd and decursinol on the neurotoxic responses induced
by kainic acid in mice. Planta Medica 2003; 69(3):230-4.
101.Shi Q, Hao Q, Bouissac J, et al. Ginsenoside-Rd from
Panax notoginseng enhances astrocyte differentiation
from neural stem cells. Life Sciences 2005; 76(9):983-
95.
102.Yokozawa T, Liu ZW, Dong E, et al. A study of
ginsenoside-Rd in a renal ischemia-reperfusion model.
Nephron 1998; 78(2):201-6.
103.Yokozawa T, Owada S. Effect of ginsenoside- Rd in
cephaloridine-induced renal disorder. Nephron 1999; 81
(2):200-7.
104.Yokozawa T, Liu ZW. The role of ginsenoside-Rd in
cisplatin-induced acute renal failure. Renal Failure
2000; 22(2): 115-27.
105.Leung KW, Yung KK, Mak NK, et al. Neuroprotective
effects of ginsenoside-Rg1 in primary nigral neurons
against rotenone toxicity. Neuropharmacology 2007; 52
(3):827-35.
106.Chen XC, Zhou YC, Chen Y, et al. Ginsenoside Rg1
reduces MPTP-induced substantia nigra neuron loss by
suppressing oxidative stress. Acta Pharmacologica
Sinica 2005; 26(1):56-62.
107.Wu CF, Bi XL, Yang JY, et al. Differential effects of
ginsenosides on NO and TNF-alpha production by LPS-
activated N9 microglia. International
Immunopharmacology 2007; 7(3):313-20.
108.Gong YS, Chen J, Zhang QZ, et al. Effect of 17beta-
oestradiol and ginsenoside on osteoporosis in
ovariectomised rats. Journal of Asian Natural Products
Research 2006; 8(7):649-56.
109.Kimura Y, Okuda H, Arichi S. Effects of various
ginseng saponins on 5-hydroxytryptamine release and
aggregation in human platelets. Journal of Pharmacy &
Pharmacology 1988; 40(12):838-43.
110.Hattori T, Suzuki Y, Ito M, et al. [Studies on
antinephritic effects of plant components in rats (2):
Effects of ginsenosides on original-type anti-GBM
nephritis in rats and its mechanisms]. Nippon
Yakurigaku Zasshi - Folia Pharmacologica Japonica 1991;
97(2):127-34.
111.Leung KW, Cheng YK, Mak NK, et al. Signaling pathway
of ginsenoside-Rg1 leading to nitric oxide production
in endothelial cells. FEBS Letters 2006; 580(13):3211-6.
112.Kim YW, Song DK, Kim WH, et al. Long-term oral
administration of ginseng extract decreases serum gamma-
globulin and IgG1 isotype in mice. Journal of
Ethnopharmacology 1997; 58(1):55-8.
113.Bradford MM. A rapid and sensitive method for the
quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding.
Analytical Biochemistry 1976; 72:248-54.
114.Leaback DH, Walker PG. Studies on glucosaminidase. 4.
The fluorimetric assay of N-acetyl-beta-
glucosaminidase. Biochemical Journal 1961; 78:151-6.
115.Linko-Lopponen S. Fluorometric measurement of urinary
N-acetyl-beta-D-glucosaminidase and its correlation to
uremia. Clinica Chimica Acta 1986; 160(2):123-7.
116.Yokozawa T, Zhou JJ, Hattori M, et al. Effects of
ginseng in nephrectomized rats. Biological &
Pharmaceutical Bulletin 1994; 17(11):1485-9.
117.Jung CH, Seog HM, Choi IW, et al. Effects of wild
ginseng (Panax ginseng C.A. Meyer) leaves on lipid
peroxidation levels and antioxidant enzyme activities
in streptozotocin diabetic rats. Journal of
Ethnopharmacology 2005; 98(3):245-50.
118.Chung SH, Choi CG, Park SH. Comparisons between white
ginseng radix and rootlet for antidiabetic activity
and mechanism in KKAy mice. Archives of Pharmacal
Research 2001; 24(3):214-8.
119.Kimura M, Waki I, Chujo T, et al. Effects of
hypoglycemic components in ginseng radix on blood
insulin level in alloxan diabetic mice and on insulin
release from perfused rat pancreas. Journal of
Pharmacobio- Dynamics 1981; 4(6):410-7.
120.Yang L, Li XM, Wang HY. A comparative study of
manchurian Dutchmanspipe and antibiotics induced acute
tubular necrosis in renal cellular biological
features. Chinese journal of integrated traditional
and Western medicine 2003; 23(5):329-34.
121.Li B, Li XM, Zhang CY, et al. Cellular mechanism of
renal proximal tubular epithelial cell injury induced
by aristolochic acid I and aristololactam I. Journal
of Peking University Health sciences 2004; 36(1):36-40.
122.Okada H, Watanabe Y, Inoue T, et al. Transgene-derived
hepatocyte growth factor attenuates reactive renal
fibrosis in aristolochic acid nephrotoxicity.
Nephrology Dialysis Transplantation 2003; 18(12): 2515-
23.
123.Hattori T, Fujitsuka N, Kurogi A, et al. [Effect of
Onpi-to (TJ-8117) on TGF-beta 1 in rats with 5/6
nephrectomized chronic renal failure.]. Nippon Jinzo
Gakkai Shi Japanese Journal of Nephrology 1996; 38
(11): 475-83.
124.Klahr S, Morrissey JJ. The role of vasoactive
compounds, growth factors and cytokines in the
progression of renal disease. Kidney International -
Supplement 2000; 75:S7-14.
125.Cho JY, Yoo ES, Baik KU, et al. In vitro inhibitory
effect of protopanaxadiol ginsenosides on tumor
necrosis factor (TNF)-alpha production and its
modulation by known TNF-alpha antagonists. Planta
Medica 2001; 67(3):213-8.
126.Kim H, Chen X, Gillis CN. Ginsenosides protect
pulmonary vascular endothelium against free radical-
induced injury. Biochemical & Biophysical Research
Communications 1992; 189(2):670-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top