跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育銓
研究生(外文):Yu-Chuan Chang
論文名稱:以脈衝直流磁控濺鍍法沉積氮化鉻矽奈米複合薄膜性質評估研究
論文名稱(外文):The microstructure and mechanical properties of pulsed DC magnetron sputtered nanocomposite Cr-Si-N thin films
指導教授:李志偉李志偉引用關係
指導教授(外文):Jyh-Wei Lee
學位類別:碩士
校院名稱:東南技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:奈米複合薄膜脈衝直流磁控濺鍍法高溫氧化
外文關鍵詞:nanocomposite thin filmspulsed DC magnetron sputteringoxidation resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
CrN薄膜具有良好的抗腐蝕與機械特性,但缺點在於硬度略低於其他硬膜,本研究透過奈米複合膜的概念,將矽元素加入CrN薄膜,形成Cr-Si-N奈米複合薄膜,對於硬度、耐磨性的提高有相當的助益。研究中使用脈衝直流磁控濺鍍法鍍製氮化鉻矽薄膜,分為兩階段進行鍍製,第一階段利用試片與矽靶及鉻靶之間的距離差異,鍍製出矽成份自0.30 at%至12.97 at%的Cr-Si-N薄膜,第二階段則改變矽靶材功率,分批鍍製矽含量為3.85 at.%至12.20 at.%均勻的Cr-Si-N薄膜進行高溫氧化試驗。觀察Cr-Si-N薄膜可發現,其表面粗糙度隨著矽含量的增加漸趨平坦,薄膜截面之柱狀晶結構亦隨矽含量的增加而消失,並產生奈米晶粒散佈於非晶質基地的奈米等級複合結構。硬度則隨著矽含量增加開始出現上升趨勢,但過高的矽含量亦會導致硬度下降,在矽含量為10.16 at.%時Cr-Si-N薄膜達到最高24.6 GPa硬度,此薄膜同時在奈米刮痕與磨耗試驗中也同樣發現具有最佳抗磨耗特性,磨擦係數約為0.08。觀察薄膜與底材模具鋼的HF附著品質發現均不佳,但從刮痕刮道觀察,較低矽含量的Cr-Si-N薄膜仍然具備有一定的附著性。於1000oC高溫氧化試驗則發現,Cr-Si-N奈米複合薄膜氧化增重明顯小於CrN薄膜,且隨著矽含量的增加能具有更好的抗高溫氧化能力。
The chromium nitride thin films exhibit good corrosion resistance and mechanical properties. But the hardness of the chromium nitride coating is slightly lower than other hard coatings. The concept of nanocomposite thin films is employed by adding silicon to form Cr-Si-N thin films with enhanced hardness and wear resistance. In this study, the Cr-Si-N nanocomposite thin films were prepared by a bipolar asymmetric pulsed DC magnetron sputtering system. In the first stage, Cr-Si-N thin films were deposited in one production process. Various Si contents of Cr-Si-N thin films were obtained by the adjustment of substrate position between the Cr and Si targets. The Si content ranging from 0.30 to 12.97 at.% were achieved. In the second stage, the Cr-Si-N thin films with silicon content ranging from 3.85at.% to 12.20at.% were prepared by adjusting the Si target power. The columnar structure of thin films disappears as Si content increase. A microstructure consists of nano grains surrounded by amorphous matrix is observed, instead. The surface roughness, grain size, hardness, residual nanowear depth and friction coefficient of Cr-Si-N films decrease with increasing Si content. Based on the scratch and the HRC adhesion strength test results, the adhesion properties of Cr-Si-N coatings deposited on tool steels are not satisfactory. Nevertheless, the adhesion properties of Cr-Si-N thin films with low Si content are still sufficient. For the oxidation test at 1000oC, the weight gain data of Cr-Si-N thin films is still lower than that of CrN coating. In general, the high temperature oxidation resistance of Cr-Si-N nanocomposite thin films increase with increasing Si content.
中文摘要……………………………………………………………………………………i
英文摘要……………………………………………………………………………………ii
目錄…………………………………………………………………………………………iii
表目錄………………………………………………………………………………………v
圖目錄………………………………………………………………………………………vi
第一章 序論…………………………………………………………………………………1
1.1 前言……………………………………………………………………………………1
1.2 研究動機與目的………………………………………………………………………2
第二章 文獻回顧……………………………………………………………………………4
2.1脈衝直流磁控濺鍍系統…………………………………………………………………4
2.1.1直流磁控濺鍍系統……………………………………………………………………4
2.1.2 脈衝磁控濺鍍法……………………………………………………………………6
2.2 氮化鉻鍍膜……………………………………………………………………………7
2.2.1 氮化鉻鍍膜特性……………………………………………………………………7
2.2.2 氮化鉻鍍膜組成……………………………………………………………………7
2.3 氮化鉻矽奈米複合薄膜………………………………………………………………9
2.3.1 氮化鉻矽奈米複合薄膜強化機制…………………………………………………9
2.3.2 氮化鉻矽奈米複合薄膜特性………………………………………………………13
第三章 實驗方法……………………………………………………………………………16
3.1 實驗流程………………………………………………………………………………16
3.2 實驗方法與步驟………………………………………………………………………19
3.2.1 基材試片規格與前處理……………………………………………………………19
3.2.2 實驗設備……………………………………………………………………………19
3.2.3 實驗步驟……………………………………………………………………………21
3.3 鍍膜性質分析…………………………………………………………………………23
3.3.1 成份分析實驗………………………………………………………………………23
3.3.2 表面及截面型態分析………………………………………………………………24
3.3.3 晶相結構分析………………………………………………………………………24
3.3.4 硬度分析……………………………………………………………………………25
3.3.5 附著性分析…………………………………………………………………………26
3.3.6 奈米磨耗與奈米刮痕分析…………………………………………………………28
3.3.7 接觸角分析…………………………………………………………………………30
3.3.8 電性分析……………………………………………………………………………30
3.4 高溫氧化試驗…………………………………………………………………………31
第四章 結果與討論…………………………………………………………………………33
4.1 具有梯度分佈矽含量之Cr-Si-N薄膜性質分析……………………………………33
4.1.1 晶相及微結構分析…………………………………………………………………33
4.1.1.1 成份分析…………………………………………………………………………33
4.1.1.2 晶相分析…………………………………………………………………………36
4.1.1.3 微結構分析………………………………………………………………………39
4.1.2 機械性質分析………………………………………………………………………56
4.1.2.1 硬度分析…………………………………………………………………………56
4.1.2.2 奈米磨耗分析……………………………………………………………………57
4.1.2.3 附著性分析………………………………………………………………………61
4.1.3 接觸角與電性分析…………………………………………………………………68
4.1.3.1 接觸角試驗………………………………………………………………………68
4.1.3.2 電性測試…………………………………………………………………………68
4.2不同矽含量之Cr-Si-N薄膜性質分析…………………………………………………71
4.2.1 晶相及微結構分析…………………………………………………………………71
4.2.1.1 成份分析…………………………………………………………………………71
4.2.1.2 晶相分析…………………………………………………………………………72
4.2.2 高溫氧化試驗………………………………………………………………………74
4.2.2.1薄膜型態變化………………………………………………………………………74
4.2.2.2晶相及成分變化……………………………………………………………………82
4.2.2.3重量變化……………………………………………………………………………92
第五章 結論……………………………………………………………………………………95
參考文獻………………………………………………………………………………………97
附錄……………………………………………………………………………………………103
1.蕭國益、翁明壽,「硬及超硬膜技術的現在與未來」,工業材料,第一百四十三期,74 ~ 89頁,民國八十七年十一月。
2.鐘永文,「物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究」,國立高雄第一科技大學,碩士論文,民國九十二年。
3.B. Navinšek, P. Panjan, I. Milošev, “Industrial applications of CrN(PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology , 97, pp. 182-191, 1997.
4.Sang S. Kim, Jeon G. Han, Sang Y. Lee., “Deposition behaviours of CrN films on the edge area by cathodic arc plasma deposition process”, Thin Solid Films, 334, pp.133, 1998.
5.J. Vetter, R. Knaup, H. Dwuletzki, E.Schneidr, S. Vogler, Surface and Coatings Technology, 87, pp. 739, 1996.
6.O. Knotek, F. Loffler, B. Bosserhoff, “PVD coatings for diecasting moulds”, Surface and Coatings Technology, 62, pp. 630-634, 1993.
7.E. Martinez, R. Sanjinés, A. Karimi, J. Esteve, F. Lévy, “Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films”, Surface and Coatings Technology, 180-181, pp. 570-574, 2004.
8.S. Veprek, “The search for novel, superhard materials”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, pp. 2401, 1999.
9.J. Musil, P. Zeman, H. Hruby´, P.H. Mayrhofer, “ZrN/Cu nanocomposite film—a novel superhard material”, Surface and Coatings Technology, 120, pp. 179, 1999.
10.F. Fang, Q. Liu, S.Z. Li, Z.S. Li, P. Karvankova, M. Jilek and S. Veprek, “Internal friction studies of nanocomposite superhard nc-TiN/a-Si3N4 and nc-(Ti1−xAlx)N/a-Si3N4 films”, Materials Science and Engineering: A, 442, pp. 328, 2006.
11.S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu and S. Veprek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surface & Coatings Technology 194, pp. 143, 2005.
12.A. Thobor-Keck, F. Lapostolle, A.S. Dehlinger, D. Pilloud, J.F. Pierson, C. Coddet, “Influence of silicon addition on the oxidation resistance of CrN coatings”, Surface & Coatings Technology, 200, pp. 264, 2005.
13.W.D. Sproul, M.H. Richman, J. Vac. Sci. Technol. 12, pp. 842, 1984.
14.艾啟峰,「活化反應磁控濺射沈積技術新發展」,工業材料雜誌,第一百八十二期,101頁,民國九十一年二月。
15.楊明輝,「脈衝磁控濺鍍技術介紹」,工業材料雜誌,第兩百三十二期,91頁,民國九十五年四月。
16.C.S. Barret, T.B. Massalski, Editors, Structure of Metals. Crystallographic Methods, Principles and Data, Pergamon Press Ltd, Oxford, pp. 403, 1980.
17.C.Nouveau, M.A. Djouadi, “Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering”, Thin Solid Films, 398-399, pp. 490-495, 2001,.
18.Fu-Hsing Lu, Hong-Yinh Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films, 398-399, pp. 368-373, 2001.
19.吳明勳,「添加銀或鎢對氮化鉻薄膜磨潤性能之影響」,國立成功大學,碩士論文,民國九十二年。
20.M. Pakala, R. Y. Lin, “Reactive sputter deposition of chromium nitride coatings”, Surface and Coatings Technology, 81, pp. 233, 1996.
21.Y. Chiba, T. Omura, and H. Ichimura, ‘’Wear resistance of arc ion-plated chromium nitride coatings’’, J. Mater. Res., 8 (5), pp.1109-1115, 1993.
22.P. Hones, M. Diserens, R. Sanjinés, F. Lévy, “Electronic structure and mechanical properties of hard coatings from the chromium–tungsten nitride system”, Journal of Vacuum Science & Technology B, 18, pp. 2851, 2000.
23.D. Gall, C.S. Shin, T. Spila, M. Ode´n, M.J.H. Senna, J.E. Greene, I.Petrov, “Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties”, Journal of Applied Physics, 91, pp. 3589, 2002.
24.C. Nouveau, M.A. Djouadi, C. Deces-Petit, P. Beer, M. Lambertin,“Influence of CrxNy coatings deposited by magnetron sputtering on tool service life in wood processing”, Surface and Coatings Technology, 142-144, pp.94-101, 2001.
25.E. Martinez, R. Sanjine’, A. Karimi, J. Esteve, F. Le’vy, “Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films”, Surface and Coatings Technology, 180-181, pp.570-574, 2004.
26.Jong Hyun Park, Won Sub Chung, Young-Rae Cho, Kwang Ho Kim, “Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, 188, pp.425, 2004.
27.William D., Callister Jr., Materials Science And Engineering An Introduction, Wiley, New York, 2003.
28.D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger, M. ˇS´ıma, “Microstructure and hardness of nanocrystalline Ti1−x−yAlxSiyN thin films”, Materials Science and Engineering A, 462, pp.279-282, 2007.
29.Jakob Schiøtz, Karsten W. Jacobsen, “A Maximum in the Strength of Nanocrystalline Copper”, Science 5, 301, 5638, pp.1357-1359, 2003.
30.K.H. Kim, S.R. Choi, S.Y. Yoon. “Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, 298, pp.243, 2002.
31.S. Veprek, M. Haussmann, S. Reiprich, Li Schzhi, J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials”, Surface and Coatings Technology, 394, pp.86-87, 1996.
32.I.W. Park, S.R. Choi, M.H. Lee, K.H. Kim, “Effects of Si addition on the microstructural evolution and hardness of Ti-Al-Si-N films prepared by the hybrid system of arc ion plating and sputtering techniques”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, A21, pp.895, 2003.
33.E.Martinez , R.Sanjine’, O.Banakh, F.Le’vy, “Electrical, optical and mechanical properties of sputtered CrNy and Cr1-xSixN1.02 thin films”, Thin Solid Films 447-448, pp.332-336, 2004.
34.S. Vepfek, S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, 268, pp.64-71, 1995.
35.S. Vepˇrek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films, 317, pp.449-454, 1998.
36.姚寶順,「反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究」,國立成功大學,博士論文,民國九十三年。
37.S. Vepˇrek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size” Thin Solid Films, 297, pp.145-153, 1997.
38.Sang Yul Lee, BomSok Kim, Sung Dea Kim, GwangSeok Kim, Yeh Sun Hong, “Effect of Si doping on the wear properties of CrN coatings synthesized by unbalanced magnetron sputtering”, Thin Solid Films, 506-507, pp.192-196, 2006.
39.J. Takadoum, H. Houmid-Bennani, D. Mairey, “The wear characteristics of silicon nitride”, Journal Of The European Ceramic Socity, 18, 305, pp.553, 1998.
40.Jung Wook Kim, Kwang Ho Kim, D.B. Lee, J.J. Moore, “Study on high-temperature oxidation behaviors of Cr–Si–N films”, Surface and Coatings Technology, 200, pp.6702-6705, 2006.
41.H.P. Klug, L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York,(1974).
42.李朝聖,「單晶銅於奈米壓入之應變分析」,中原大學,碩士論文,民國九十五年
43.Oliver, W. C., Pharr, G. M., “An Improved Technique for Determining Hardness and Elasic Modulus Using Load and Displacement Sensing Indentation Experiments”, Journal of Materials Research, 7(6), pp.1564-1583, 1992.
44.TriboScope User Manual, Hysitron Inc, 2002.
45.何恕德,「以導電性原子顯微鏡研究矽在奈米壓痕下之相變化行為」,國立清華大學碩士論文,民國九十二年。
46.Angélélis, C., Ducarroir, M., Felder, E., Ignat, M., Scordo, S., “Comparison of coating failure induced by indentation and bending test”, Surface Engineering, 13, 3, pp.207-212, 1997.
47.A. J. Perry, “Scratch adhesion testing of hard coatings”, Thin Solid Films, 107, pp.167, 1983.
48.S. J. Bull, “Failure mode maps in the thin film scratch adhesion test”,Tribology International, 30, pp.491, 1997.
49.Per Hedenqvist, Sture Hogmark, “Experiences from scratch testing of tribological PVD coatings”, Tribology International, 30, pp.507, 1997.
50.Magnus Odén, Claes Ericsson, Greger Håkansson, Henrik Ljungcrantz, “Microstructure and mechanical behavior of arc-evaporated Cr–N coatings”, Surface and Coatings Technology, 114, pp.39-51, 1999.
51.鄭凱文,「非平衡磁控濺鍍含鎳氮化鉻鍍膜之磨潤性能」,國立成功大學,碩士論文,民國九十四年。
52.C.S. Sandu , R. Sanjinés, M. Benkahoul, F. Medjani, F. Lévy, “Formation of composite ternary nitride thin films by magnetron sputtering co-deposition”, Surface and Coatings Technology, 201, pp.4083-4089, 2006.
53.H.Y. Lee, W.S. Jung, J.G. Han, S.M. Seo, J.H. Kim, Y.H. Bae, “The synthesis of CrSiN film deposited using magnetron sputtering system”, Surface and Coatings Technology, 200, pp.1026-1030, 2005.
54.P.Y. Jouan, M.C. Peignon, Ch. Cardinaud, G. Lempérière, “Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy”, Applied Surface Science, 68, pp.595-603, 1993.
55.K. Yamamoto, T. Sato, M. Takeda, “Structural analysis of (Cr1-xSix)N coatings and tribological property in water environment”, Surface and Coatings Technology, 193, pp.167-172, 2005.
56.S. Vepřek, M.G.J. Vepřek-Heijman, “The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites”, Surface and Coatings Technology, 201, pp.6064, 2007.
57.D. Mercs, N. Bonasso, S. Naamane, J.-M. Bordes, C. Coddet, “Mechanical and tribological properties of Cr–N and Cr–SI–N coatings reactively sputter deposited” Surface and Coatings Technology, 200, pp.403-407, 2005.
58.Xiaodong Li, Bharat Bhushan, “Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings” J. Mater. Res., 14, pp.2328, 1999.
59.J.W. Lee, J.G. Duh, “Nanomechanical properties evaluation of chromium nitride films by nanoindentation and nanowear techniques”, Surface and Coatings Technology, 188-189, pp.655, 2004.
60.I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rh, K.H. Kim, “Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system”, Surface and Coatings Technology, 201, pp.5223, 2007.
61.高健薰、陳順源、胡一君、游智勝、胡恆蒼「自由基檢測儀」,國家實驗研究院,專題企劃,2006年12月22日,http://www.narl.org.tw/tw/topic/。
62.Eiji Kuze, Tomoyuki Teramoto, Ken Yukimura, Toshiro Maruyama, “Contact angle of water on chromium nitride thin film prepared on threedimensional materials by chromium plasma-based ion implantation”, Surface and Coatings Technology, 158-159, pp.577-581, 2002.
63.J. Vetter, R. Knaup, H. Dweletzki, E. Schneider, S. Vogler, “Hard coatings for lubrication reduction in metal forming”, Surface and Coatings Technology, 86-87, pp.739-747, 1996.
64.張儀賢,「低操作電壓之數位微流體進樣傳輸晶片及其在聚合酶連鎖反應之應用」,國立成功大學,碩士論文,民國九十四年。
65.M.-A. Nicolet, “Diffusion barriers in thin films”, Thin Solid Films, 52, pp.415, 1978.
66.L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller and J. Patscheider, “High temperature phase changes and oxidation behavior of Cr–Si–N coatings”, Surface and Coatings Technology, In Press, Corrected Proof, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top