跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣加聖
研究生(外文):Chia-Sheng Chiang
論文名稱:新型具吡咯基取代之三苯胺基團之高性能高分子的合成與電化學及光致發光性質之研究
論文名稱(外文):Synthesis, Electrochemistry and Photoluminescence of High-Performance Polymers Bearing Pyrrole-substituted Triphenylamino Groups
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:吡咯三苯胺聚醯胺光致發光
外文關鍵詞:polyamidePhotoluminescencePyrroleTriphenylamine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含兩個研究主題,第一部分是在探討含有4-(N-pyrrolyl)triphenylamine結構的新穎芳香族聚(胺-醯胺)之合成與性質。一種新型由吡咯衍生及含有三苯胺結構的二羧酸4,4'-dicarboxy-4"-(N-pyrrolyl)triphenylamine, 是由4-fluorobenzonitrile 和4-(N-pyrrolyl)aniline的鈉塩進行-芳香親核取代反應,然後在鹼性條件下水解二氰中間產物而得到。一系列固有黏度介於0.52-0.88 dL/g 的聚(胺-醯胺)是由此二羧酸單體與各種芳香族二胺以直接磷酸化聚縮合反應製備而得。這些聚(胺-醯胺)都可溶於多數的有機溶劑並可經溶液重鑄成強韌的薄膜。這些聚(胺-醯胺)具有高的玻璃轉化溫度 (Tg=275–326℃) 及在氮氣下10 % 的熱重量損失溫度在450 ℃以上,顯示出不錯的熱穩定性。這些聚合物溶在NMP的稀薄溶液的光激發光譜顯示出在波長446-455 nm的藍光區有中等到強的放光現象,其量子效率最高可達38 %。
本論文第二部分係探討以含有吡咯基取代的三苯胺結構的新穎poly(amine-hydrazide)s及poly(amine-1,3,4-oxadiazole)s之合成與性質。兩種新穎之poly(amine-hydrazide)s的聚合物,是由4,4'-dicarboxy-4"-(N-pyrrolyl)triphenylamine 與 terephthalic dihydrazide (TPH) 和 isophthalic dihydrazide (IPH) 經由Yamazaki磷酸化反應所合成出來。這些poly(amine-hydrazide)s 可溶於多數的有機溶劑,例如N-methyl-2-pyrrolidone (NMP) 和 N,N-dimethylacetamide (DMAc) 並可經它們的溶液鑄成強韌的薄膜。由IPH 衍生的 poly(amine-hydrazide)在NMP溶液中的光激發光譜顯示出在波長478 nm的藍光區有強的放光現象,其量子效率可達33 %。經由示差掃描量熱分析 (DSC) 結果顯示,這兩種分別由TPH 與IPH衍生的hydrazide聚合物的玻璃轉化溫度分別為252℃以及235℃,並且會在300-400℃的溫度範圍內脫水轉化成相對應的poly(amine-1,3,4-oxadiazole)s。這兩個poly(amine-1,3,4-oxadiazole)s的玻璃轉化溫度 Tg在266–268℃附近,在氮氣下10 % 的熱重量損失溫度可在543 ℃以上,和在氮氣下800℃時的焦炭殘餘量可高達70%。與不含吡咯側鏈基的相類似聚合物比較時,本論文所合成的poly(amine-amide)s及poly(amine-hydrazide)s具有相對較差的電化學穩定性。
This thesis consists of two parts. The first part describes the synthesis and properties of novel aromatic poly(amine-amide)s containing 4-(N-pyrrolyl)triphenylamine moieties. A new pyrrole-derived triphenylamine-containing dicarboxylic acid monomer, 4,4'-dicarboxy-4"-(N-pyrrolyl)triphenylamine, was synthesized via the aromatic nucleophilic fluoro-displacement reaction of 4-fluorobenzonitrile with 4-(N-pyrrolyl)aniline using sodium hydride as the base, followed by alkaline hydrolysis of the dinitrile intermediate. One series of poly(amine-amide)s with inherent viscosities of 0.52-0.88 dL/g were prepared by the direct phosphorylation polycondensation from the synthesized diacid monomer with various aromatic diamines. The resultant poly(amine-amide)s were readily soluble in a variety of organic solvents and could afford strong and tough films via solution casting. These aromatic poly(amine-amide)s have useful levels of thermal stability associated with high glass transtion temperatures (Tg=275-326 ℃) and 10 % weight loss temperatures in excess of 450 ℃ in nitrogen. In dilute NMP solution, these polymers exhibited a medium to strong photoluminescence in the blue region at 446~455 nm with quantum yield up to 38 %.
The second part of this thesis investigates the synthesis and properties of novel poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s containing pyrrolyl-substituted triphenylamine units. Two novel poly(amine-hydrazide)s were synthesized from 4,4'-dicarboxy-4"-(N-pyrrolyl)triphenylamine with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH) via the Yamazaki phosphorylation reation. The obtained poly(amine-hydrazide)s were easily soluble in polar organic solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) and could be solution-cast into free-standing or strong films. The poly(amine-hydrazide) derived from IPH exhibited strong blue photoluminescence at 478 nm in NMP with 33 % quantum yield. Differential scanning calorimetry (DSC) indicated that these two hydrazide polymers had Tg values of 252℃ (from TPH) and 235℃ (from IPH), respectively, and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300-400℃. The resulting poly(amine-1,3,4-oxadiazole)s exhibited Tg around 266-268℃, 10 % weight-loss temperature in excess of 543℃, and char yield at 800℃ in nitrogen higher than 70 %. In comparison with the parent triphenylamine-based analogs without the pyrrole pendent group, the newly synthesized poly(amine-amide)s and poly(amine-hydrazide)s containing the 4-(N-pyrrolyl)triphenylamine unit revealed a relatively decreased electrochemical stability.
ACKNOWLEDGEMENTS………………………………………………i
ABSTRACT (in English)………………………………………ii
ABSTRACT (in Chinese)………………………………………iv
TABLE OF CONTENTS………………………………………………vi
LIST OF SCHEMES…………………………………………………ix
LIST OF TABLES…………………………………………………ix
LIST OF FIGURES…………………………………………………x

PART I
Synthesis and Properties of Poly(amine-amide)s Based on 4,4'-Dicarboxy-4"-(N-pyrrolyl)triphenylamine 1
CHAPTER 1 INTRODUCTION…………………………………………………2
CHAPTER 2 EXPERIMENTAL..…………...………………………………5
2.1 Materials……………….……………………………….. 5
2.2 Monomer Synthesis…………….………………………..5
2.2.1 N-(4-Nitrophenyl)pyrrole (1)………………………………5
2.2.2 4-(N-pyrrolyl)aniline (2)……..……….…….6
2.2.3 4,4'-Dicyano-4"-(N-pyrrolyl)triphenylamine (3)……….7
2.2.4 4,4'-Dicarboxy-4"-(N-pyrrolyl)triphenylamine (4)………...8
2.3 Polymer Synthesis…………………………9
2.4 Preparation of the Poly(amine-amide) Films...........10
2.5 Measurements………………………………...….........……….10
CHAPTER 3 RESULTS AND DISCUSSION……………………13
3.1 Monomer Synthesis………………………………………...13
3.2 Polymer Synthesis…………………………………………………….24
3.3 Polymer Properties…..……………..…..…………………27
3.3.1 Organo-solubility and X-ray Diffraction Data...............................27
3.3.2 Tensile Properties...............................................27
3.3.3 Thermal Properties..................................................30
3.3.4 Optical and Electrochemical Properties.........................................34
CHAPTER 4 CONCLUSIONS……………………………............39
REFERENCES……..…...…………………………………..…………40

PART II
Synthesis and Properties of Aromatic Poly(amine-hydrazide)s and Poly(amine-1,3,4-oxadiazole)s Based on 4,4'-Dicarboxy-4"-(N-pyrrolyl)triphenylamine……44
CHAPTER 1 INTRODUCTION……………………………………………45
CHAPTER 2 EXPERIMENTAL..…………...…………………………48
2.1 Materials……………….………………………...……..48
2.2 Polymer Synthesis………………………………........50
2.3 Film preparation and cyclodehydration of the hydrazide polymers....50
2.4 Measurements……………………………..........………51
CHAPTER 3 RESULTS AND DISCUSSION…………………………….53
3.1 Polymer Synthesis………………………………………………53
3.2 Polymer Solubility and Film Morphology…..………………59
3.3 Thermal Properties of Polymers…………………………………60
3.4 Optical Properties…………………………………………63
CHAPTER 4 CONCLUSIONS……………………………................68
REFERENCES……..…...…………………………………..………………69

LIST OF SCHEMES

PART I
Scheme 1. Synthetic route to the target dicarboxylic acid monomer 4……………16
Scheme 2. Synthesis of poly(amine-amide)s……………………………….25
PART II
Scheme 1. Synthesis of dicarboxylic acid monomer 4. (a) p-fluoronitrobenzene,
NaH, DMSO; (b) Hydrazine, Pd/C, ethanol; (c) p-fluorobenzonitrile
(2 equiv.), NaH, DMSO; (d) KOH, ethanol; (e) H3O+…….……..……49
Scheme 2. Synthesis of poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s………………………………………..55

LIST OF TABLES

PART I
Table 1. Optical and electrochemical properties of compounds 3 and 4………22
Table 2. Inherent viscosities and solubility behavior of poly(amine-amide)s…….29
Table 3. Thin film tensile properties of poly(amine-amide)s ……………………29
Table 4. Thermal properties of poly(amine-amide)s………………..…..………32
Table 5. Optical and electrochemical properties of the poly(amine-amide)s…...…36

PART II
Table 1. Inherent viscosity and solubility of poly(amine-hydrazide)s and
poly(amine-1,3,4-oxadiazole)s…………….……………………………56
Table 2. Thermal behavior of poly(amine-hydrazide)s and
poly(amine-1,3,4-oxadiazole)s……………………….…………………..61
Table 3. Optical and electrochemical properties for poly(amine-hydrazide)s and
poly(amine-1,3,4-oxadiazole)s…………………….……………………65

LIST OF FIGURES

PART I
Figure 1. IR spectra of the synthesized compounds 1-4……………...…17
Figure 2. (a) 1H NMR and (b) 13C NMR spectra of compound 3 in DMSO-d6....18
Figure 3. (a) 1H NMR and (b) 13C NMR spectra of the dicarboxylic acid monomer 4 in DMSO-d6…………………………………………….…19
Figure 4. H-H COSY spectrum of the dicarboxylic acid monomer 4 in DMSO-d6……………………………………………………………….20
Figure 5. C-H HMQC spectrum of the dicarboxylic acid monomer 4 in DMSO-d6………......................................................21
Figure 6. Solution absorption and PL spectra of compounds 3 and 4 with a concentration of 10-5 M in NMP. The photograph shows the physical appearance of their solutions (10-5 M) before and after exposure on UV irradiation (excited at about 365 nm)……………………………...……23
Figure 7. The thin film FTIR spectrum of poly(amine-amide) 6a………26
Figure 8. WAXD patterns of the poly(amine-amide)s.…………………..….28
Figure 9. TMA curve of poly(amine-amide) 6a with a heating rate 10 oC/ min……...……...…………………………………………………….….33
Figure 10. TGA curve of poly(amine-amide) 6d with a heating rate 20 oC/ min…..….............................................................33
Figure 11. Absorption and PL spectra of some poly(amine-amide)s with a concentration of 10-5 M in NMP. The photograph shows the physical appearance of polyamide solution (10-5 M) before and after exposure on UV irradiation (excited at about 365 nm).…………………………………………………………………37
Figure 12. Cyclic voltammograms of the cast films of ofpoly(amine-amide)s (a) 6d and (b) 6'd on the indium-tin oxide (ITO)-coated glass substrate in CH3CN containing 0.1M TBAP, with a scan rate of 0.1 V/s. The inset shows the CV curve of ferrocene as the reference….……………………………………………………………38

PART II
Figure 1. IR spectra of poly(amine-hydrazide) 5-IPH and poly(amine-1,3,4-
oxadiazole) 6-IPH…..……………………………..........................57
Figure 2. DSC traces of poly(amine-hydrazide) 5-TPH and poly(amine-1,3,4-oxadiazole) 6-TPH with a heating rate of 20 oC/ min in nitrogen…..………………………………………………58
Figure 3. TGA curves of poly(amine-hydrazide) 5-TPH and poly(amine-1,3,4-oxadiazole) 6-TPH with a heating rate of 20 oC/ min in nitrogen…................................................…58
Figure 4. TGA thermograms of poly(amine-1,3,4-oxadiazole) 6-TPH at a heating rate of 20 oC/min……………………………...……………...…62
Figure 5. UV-Vis absorption and PL spectra of poly(amine-hydrazide)s in NMP solution (10-5 M). Quinine sulfate dissolved in 1 N H2SO4 (aq) (10-5 M) was used as the standard (ΦF = 0.546). Photographs show the appearance of the sample solutions before and after exposure to a standard laboratory lamp (excited at 365 nm).………….………66
Figure 6. Cyclic voltammogram (CV) of the cast films of poly(amine-hydrazide)s (a) 5-TPH and (b) 5'-TPH on the indium-tin oxide (ITO)-coated glass substrate in CH3CN containing 0.1 M TBAP, with a scan rate of 0.1 V/s. The inset shows the CV curve of ferrocene as the standard......67
PART 1
1.C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
2.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
3.(a) C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 85, 3610; (b) C. Adachi, K. Nagai, N. Tamoto, Appl. Phys. Lett. 1995, 66, 2679; (b) Y. Shirota, J. Mater. Chem. 2000, 10, 1; (d) Y. Shirota, J. Mater. Chem. 2005, 15, 79; (e) M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442.
4.(a) J. P. Lu, A. R. Hlil, Y. Sun, A. S. Hay, T. Maindron, J.-P. Dodelet, M. D’Iorio, Chem. Mater. 1999, 11, 2501; (b) X. Wang, M. Nakao, K. Ogino, H. Sato, H. Tan, Macromol. Chem. Phys. 2001, 202, 117; (c) Q. Fang, T. Yamamoto, Macromolecules 2004, 37, 5894; (d) H. B. Xiao, B. Leng, H. Tian, Polymer 2005, 46, 5705; (e) M. H. Sun, J. Li, B. S. Li, Y. Q. Fu, Z. S. Bo, Macromolecules 2005, 38, 2651; (f) S. Jungermann, N. Riegel, D. Muller, K. Meerholz, O. Nuyken, Macromolecules 2006, 39, 8911; (g) M.-S. Jung, T.-W. Lee, J. Hyeon-Lee, B. H. Sohn, I.-S. Jung, Polymer 2006, 47, 2670.
5.(a) Y. Q. Liu, M. S. Liu, X.-C. Li, A. K.-Y. Jen, Chem. Mater. 1998, 10, 3301; (b) X.-C. Li, Y. Q. Liu, M. S. Liu, A. K.-Y. Jen, Chem. Mater. 1999, 11, 1568; (c) M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, E. P. Woo, Adv. Mater. 1999, 11, 241; (d) C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, K. Mullen, Adv. Mater. 2002, 14, 809; (e) C.-F. Shu, R. Dodda, F.-I. Wu, M. S. Liu, A. K.-Y. Jen, Macromolecules 2003, 36, 6698; (f) F.-I. Wu, P.-I. Shih, C.-F. Shu, Y.-L. Tung, Y. Chi, Macromolecules 2005, 38, 9028.
6.(a) Y.-J. Pu, M. Soma, J. Kido, H. Nishide, Chem. Mater. 2001, 13, 3817; (b) F. S. Liang, Y.-J. Pu, T. Kurata, J. Kido, H. Nishide, Polymer 2005, 46, 3767; (c) F. S. Liang, T. Kurata, H. Nishide, J. Kido, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5765; (d) D. Vak, J. Jo, J. Ghim, C. Chun, B. Lim, A. J. Heeger, D.-Y. Kim, Macromolecules 2006, 39, 6433; (e) P.-I Shih, Y.-H. Tseng, F.-I. Wu, A. K. Dixit, C.-F. Shu, Adv. Funct. Mater. 2006, 16, 1528; (f) R. Tang, Z. Tan, Y. Li, F. Xi, Chem. Mater. 2006, 18, 1053.
7.(a) T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Muller, K. Meerholz, A. Yasuda, D. Neher, Adv. Mater. 2001, 13, 565; (b) Y. Q. Fu, Y. Li, J. Li, S. K. Yan, Z. S. Bo, Macromolecules 2004, 37, 6395; (c) H.-J. Son, W.-S. Han, K. H. Lee, H. J. Jung, C. Lee, J. Ko, S. O. Kang, Chem. Mater. 2006, 18, 5811.
8.H. H. Yang, Aromatic High-Strength Fibers, Wiley: New York, 1989.
9.(a) Y. Imai, High Perform. Polym. 1995, 7, 337; (b) Y. Imai, React. Funct. Polym. 1996, 30, 3; (c) G.-S. Liou, S.-H. Hsiao, J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1781; (d) S.-H. Hsiao, C.-W. Chen, G.-S. Liou, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 3302;
10.(a) Y. Oishi, H. Takado, M. Yoneyama, M. Kakimoto, Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 1763; (b) G.-S. Liou, S.-H. Hsiao, M. Ishida, M. Kakimoto, Y. Imai, J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2810; (c) G.-S. Liou, S.-H. Hsiao, J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 94.
11.(a) K. Ogino, A. Kanagae, R. Yamaguchi, H. Sato, J. Kurtaja, Macromol. Rapid Commun. 1999, 20, 103; (b) M.-Y. Chou, M.-K. Leung, Y. O. Su, S.-L. Chiang, C.-C. Lin, J.-H. Liu, C.-K. Kuo, C.-Y. Mou, Chem. Mater. 2001, 16, 654; (c) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Macromolecules 2005, 38, 307; (d) S.-H. Hsiao, Y.-M. Chang, H.-W. Chen, G.-S. Liou, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579; (e) G.-S. Liou, S.-H. Hsiao, H.-W. Chen, J. Mater. Chem. 2006, 16, 1831; (f) S. Beaupre, J. Dumas, M. Leclerc, Chem. Mater. 2006, 18, 4011; (g) K. Choi, S. J. Yoo, Y.-E. Sung, R. Zentel, Chem. Mater. 2006, 18, 5823.
12.(a) R. M. Walczak, J. R. Reynolds, Adv. Mater. 2006, 18, 1121; (b) H. Li, C. Lambert, R. Stahl, Macromolecules 2006, 39, 2049.
13.N. Yamazaki, M. Matsumoto, F. Higashi, J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373.
PART 2
1. Cassidy, P. E. Thermally Stable Polymers: Synthesis and Properties; Marcel Dekker: New York, 1980; p 179.
2. Nanjan, M. J. In Encyclopedia of Polymer Science and Engineering; Mark, J. F.; Bikales, N. M.; Overberger, C. G.; Menges, G.; Kroschwitz, J. I., Eds.; Wiley: New York, 1988; Vol. 12.
3. Yu, W.-L.; Meng, H.; Pei, J.; Huang, W.; Li, Y.; Heeger, A. J. Macromolecules 1998, 31, 4838.
4. Song, S.-Y.; Jang, M.-S.; Shim, M.-K.; Hwang, D.-H.; Zyung, T. Macromolecules 1999, 32, 1482.
5. Hwang, S.-W.; Chen, Y. Macromolecules 2002, 35, 5438.
6. Yu, Y.-H.; Chen, Y. J Polym Sci Part A: Polym Chem 2003, 41, 2765.
7. Chen, S.-H.; Chen, Y. J Polym Sci Part A: Polym Chem 2004, 42, 5900.
8. Yang, N.-C.; Lee, S.-M.; Yoo, Y.-M.; Kim, J.-K.; Suh, D.-H. J Polym Sci Part A: Polym Chem 2004, 42, 1058.
9. Mikroyannidis, J. A.; Spiliopoulos, I. K.; Kasimis, T. S.; Kulkarni, A. P.; Jenekhe, S. A. J Polym Sci Part A: Polym Chem 2004, 42, 2112.
10. Mikroyannidis, J. A.; Barberis, V. P.; Ding, L.-M.; Karasz, F. E. J Polym Sci Part A: Polym Chem 2004, 42, 3212.
11. Hughes, G.; Bryce, M. R. J Mater Chem 2005, 15, 94.
12. Hedrich, J. L. Polymer 1992, 33, 3375.
13. Thaemlitz, C. J.; Weikeil, W. J.; Cassidy, P. E. Polymer 1992, 33, 3278.
14. Hensema, E. R.; Sena, M. E. R.; Mulder, M. H. V.; Smolders, C. A. J Polym Sci Part A: Polym Chem 1994, 32, 527.
15. Saegusa, Y.; Iwasaki, T.; Nakamura, S. Macromol Chem Phys 1997, 198, 1799.
16. Maglio, G.; Palumbo, R.; Tortora, M.; Trifuoggi, M.; Varricchio, G. Polymer 1998, 25, 6407.
17. Hsiao, S.-H.; Yu, C.-H. J Polym Sci Part A: Polym Chem 1998, 36, 1847.
18. Hsiao, S.-H.; Dai, L.-R.; He, M.-S. J Polym Sci Part A: Polym Chem 1999, 37, 1169.
19. Wienk, M. M.; Janssen, R. A. J. Chem. Commun. 1996, 267-268.
20.Stickley, K. R.; Selby, T. D.; Blackstock, S. C. J. Org. Chem. 1997, 62, 448-449..
21.Jin, S. H.; Jung. E. J.; Park, D. K.; Jeon, B. C.; Kwon, S. K.; Kim, Y. H.; Moon, D. K.; Kim, S. H.; Gal, Y. S. Eur. Polym. J. 2001, 37, 921.
22.Hong, Y. R.; Lee, D. W.; Kim, K.; Jin, J. I.; Lee, C. E.; Lee, H. M.; Park, Y.; Shon, B. H.; Park, J. K. Macromol. Symp. 2001, 175, 169.
23.Lu, J.; Hill, A. R.; Sun, Y.; Hay, A. S.; Maindron, T.; Dodelet, J.-P.; D’Iorio, M. Chem. Mater. 1999, 11, 2501.
24.Chen, Y.; Sheu, R. B.; Wu, T. Y. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 725.
25.Tang, C. W., Appl. Phys. Lett. 1986, 48, 183.
26.Okutsu, S., Onikubo, T., Tamano, M., Enokida, T., IEEE Trans. Electron Devices 1997, 44, 1302.
27.Shirota, Y., Organic Light-Emitting Materials and Devices (Ed: Z. Kafafi), Proc. SPIE 1997, 3148, 186.
28.Giebeler, C., Antoniadis, H., Bradley, D. D. C., Shirota, Y., Appl. Phys. Lett. 1998, 72, 2448.
29.Fujikawa, H., Tokito, S., Taga, Y., Synth. Met. 1997, 91, 161.
30.Stolka, M., Yanus, J. F., Pai, D. M. J. Phys. Chem. 1984, 88, 4707.
31.Staudigel, J., Stössel, M., Steuber, F., Simmerer, J. Appl. Phys. 1999, 86, 3895.
32.Sun, M. H.; Li, J.; Li, B. S.; Fu, Y. Q.; Bo, Z. S. Macromolecules 2005, 38, 2651.
33.Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K. Adv. Mater. 2002, 14, 809.
34.Kim, Y. H.; Zhao, Q. H.; Kwon, S. K. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 172.
35.Fu, Y. Q.; Li, Y.; Li, J.; Yan, S. K.; Bo, Z. S. Macromolecules 2004, 37, 6395.
36.Song, S. Y.; Jang, M. S.; Shim, M. K.; Hwang, D. H.; Zyung, T. Macromolecules 1999, 32, 1482.
37.Hwang, S. W.; Chen, Y. Macromolecules 2002, 35, 5438.
38.Liou, G. S.; Su, T. H.; Hsiao, S. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3245.
39.Liou, G. S.; Hsiao, S. H.; Su, T. H. J. Mater. Chem. 2005, 15, 1812.
40.Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Polymer 2005, 46, 5939.
41.Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307.
42.Liou, G. S.; Hsiao, S. H.; Huang, N. K. ; Yang, Y. L. J. Macromolecules. 2006, 39, 5337.
43.Liou, G. S.; Hsiao, S. H.; Chan, H. W. J. Mater. Chem. 2006, 15, 1831.
44.Hsiao, S. H.; Chan, Y. M.; Chan, H. W.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579.
45.Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top