跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:雷博欽
研究生(外文):Bo-Chin Lei
論文名稱:以限制葡萄糖濃度饋料醱酵培養重組大腸桿菌生產ColicinE7Nuclease之研究
論文名稱(外文):The Study of Colicin E7 Nuclease Production by Recombinant Escherichia coli in Glucose-limited Fed-batch Cultivation
指導教授:陳志成陳志成引用關係
指導教授(外文):C. Will Chen
學位類別:博士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
畢業學年度:94
語文別:英文
論文頁數:140
中文關鍵詞:重組大腸桿菌饋料醱酵培養
外文關鍵詞:Fed-batch cultivationRecombinant E.coli
相關次數:
  • 被引用被引用:3
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
於本研究中利用饋料批次醱酵培養重組Escherichia coli DH5�� 以生產含有核酸水解酶(nuclease domain)與免疫蛋白(immunity protein, Im7)之coliciny Im7 complex。由於核酸水解酶為細胞毒素,所以當IPTG進行誘導表現時,必須藉由coliciny Im7 complex 的生成以降低細胞毒素的毒性。利用Luria-Bertani (LB) medium 進行批次醱酵培養,所獲得的coliciny Im7 complex比活性(specific biomass activity)、單位體積活性(volumetric nuclease activity) 與產率活性(productivity of nuclease activity)分別為763 U/g cell、4223 U/l 與384 U/l/h。
於研究中利用2III3-1 部分因子實驗設計獲得之semi-synthetic medium (SS medium) 可以獲得最大的細胞產量。採用SS medium 進行批次醱酵培養可以增進coliciny Im7 complex 之產量。因此,於SS medium中進行限制葡萄糖濃度(1 g/l glucose)之控制策略,並且於饋料過程添加酵母抽出物(yeast extract)可以coliciny Im7 complex比活性(specific biomass activity)、單位體積活性(volumetric nuclease activity) 與產率活性(productivity of nuclease activity)分別為24852 U/g cell、618187 U/l 與41212 U/l/h。
In this work, we developed a fed-batch culture to enhance the production of the coliciny Im7 complex, which consisted of nuclease domain and immunity protein (Im7) of colicin E7 using a recombinant Escherichia coli DH5��. Since the nuclease activity is cytotoxic, the cell biomass may degrade after isopropyl-��-D-thiogalacto- pyranoside
(IPTG) induction for gene expression. Therefore, it is beneficial to reduce the cytotoxicity of nuclease domain with coliciny Im7 complex. When Luria-Bertani (LB) medium is added to the batch culture, the specific biomass, volumetric and productivity of nuclease activity of coliciny Im7 complex were measured to be 763 U/g cell, 4223 U/l and 384 U/l/h.
We successfully developed a semi-synthetic medium (SS medium) to obtain maximum biomass by 2III3-1 fractional factorial design. SS medium could be utilized to increase coliciny Im7 complex production. By using a SS medium, along with the glucose-limited control strategy (at 1 g/l of glucose concentration), and adding yeast extract (YE) at post-induction stage, increased the specific biomass, volumetric and productivity of nuclease activity were increased to be 24852 U/g cell, 618187 U/l and 41212 U/l/h, respectively.
ENGLISH ABSTRACT……….……………….…………………………I
CHINESE ABSTRACT…..……..……..………………..…………….…II
TABLES OF CONTENTS….…………......…….…………..………….III
LIST OF FIGURES………………….......………………..…………….VI
LIST OF TABLES……………….......…………………….……………IX
CHAPTER
I Introduction.………………………...….................………….….1
1.1 Introduction of colicin………..……..……………….…1
1.2 E-type colicins….....……………………………………4
1.3 Interactions of colicin E7 and immunity protein…….....8
1.4 Function of nuclease domain of colicin E7……….........9
1.5 Measurement of nuclease activity……………………..13
1.6 Recombinant protein production by Escherichia coli...15
1.7 The object for the experiment…………………………18
II Materials and Methods…………….…..……………..…………19 2.1 Strains...…….…………..……………………………..19
2.2 Medium Preparation and 2III3-1 fractional factorial design…………………………………………………19
2.3 Seed cultivation……………………………………….23
2.4 Batch and fed-batch fermentation……………………..23
2.5 Analytical methods for fermentation process…………27
2.6 Protein Harvesting…………………………………….28
2.7 Purification of colicin E7 nuclease……………………28
2.8 Nuclease activity assay……...………………………...29
III Results and Discussion.…..……....……………………………..31
3.1 Batch cultivation with LB medium…..…......................31
3.2 Effect of the yeast extract on fed-batch cultivation with
LB medium……………………………………………33
3.3 Medium improvement for colicin E7 nuclease
production………………………………………….…37
3.4 Glucose-limited and YE effects on fed-batch cultivation
with SS medium………………………………………48
IV Conclusions……….........................................................…….....53
REFERENCES…........…………………….…………………...….……54
APPENDIXES..........................................................................................64
Appendix 1. The display scheme of Advantech Genie Software using in
fermentation program…….......................................…..65
Appendix 2. The standard curve of dry cell weight and OD600nm….....70
Appendix 3. The Gompertz model analysis of Run 1..........................71
Appendix 4. The Gompertz model analysis of Run 2………………..72
Appendix 5. The Gompertz model analysis of Run 3………………..73
Appendix 6. The Gompertz model analysis of Run 4………………..74
Appendix 7. The standard curve of standard Calf thymus DNA
concentration and fluorescent unit…..…………………75 Appendix 8. The colicin E7 nuclease activity assay in batch
cultivation with LB medium……..…………………….76
Appendix 9. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:0) with LB medium……..77
Appendix 10. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:1) with LB medium……78
Appendix 11. The colicin E7 nuclease activity assay in fed-batch
cultivation with SS medium………………………….79
Appendix 12. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:1) with SS medium…….80







LIST OF FIGURES
Figure 1.1 Mechanism of cell killing by E-type nuclease colicins…….7
Figure 2.1 The process of fed-batch fermentation……………………26
Figure 3.1 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with LB medium in batch cultivation……………..………………...………………32
Figure 3.2 Time courses of cell growth and production of colicin E7
nuclease by recombinant E. coli with LB medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:0.....…………………..…35
Figure 3.3 Time courses of cell growth and production of colicin E7
nuclease by recombinant E. coli with LB medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:1...………………………36
Figure 3.4 The growth curve and acetate accumulation of 2III3-1 fractional factorial design…………………..………….40
Figure 3.5 Main effect plot of carbohydrate (glucose concentration)
with response of maximum dry cell weight……...…….42
Figure 3.6 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with SS medium in batch cultivation………………………………………….......47
Figure 3.7 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with SS medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:1……………….……......50
Figure 3.8 SDS-PAGE analysis of purified colicin E7 nuclease.....51


ENGLISH ABSTRACT……….……………….…………………………I
CHINESE ABSTRACT…..……..……..………………..…………….…II
TABLES OF CONTENTS….…………......…….…………..………….III
LIST OF FIGURES………………….......………………..…………….VI
LIST OF TABLES……………….......…………………….……………IX
CHAPTER
I Introduction.………………………...….................………….….1
1.1 Introduction of colicin………..……..……………….…1
1.2 E-type colicins….....……………………………………4
1.3 Interactions of colicin E7 and immunity protein…….....8
1.4 Function of nuclease domain of colicin E7……….........9
1.5 Measurement of nuclease activity……………………..13
1.6 Recombinant protein production by Escherichia coli...15
1.7 The object for the experiment…………………………18
II Materials and Methods…………….…..……………..…………19 2.1 Strains...…….…………..……………………………..19
2.2 Medium Preparation and 2III3-1 fractional factorial design…………………………………………………19
2.3 Seed cultivation……………………………………….23
2.4 Batch and fed-batch fermentation……………………..23
2.5 Analytical methods for fermentation process…………27
2.6 Protein Harvesting…………………………………….28
2.7 Purification of colicin E7 nuclease……………………28
2.8 Nuclease activity assay……...………………………...29
III Results and Discussion.…..……....……………………………..31
3.1 Batch cultivation with LB medium…..…......................31
3.2 Effect of the yeast extract on fed-batch cultivation with
LB medium……………………………………………33
3.3 Medium improvement for colicin E7 nuclease
production………………………………………….…37
3.4 Glucose-limited and YE effects on fed-batch cultivation
with SS medium………………………………………48
IV Conclusions……….........................................................…….....53
REFERENCES…........…………………….…………………...….……54
APPENDIXES..........................................................................................64
Appendix 1. The display scheme of Advantech Genie Software using in
fermentation program…….......................................…..65
Appendix 2. The standard curve of dry cell weight and OD600nm….....70
Appendix 3. The Gompertz model analysis of Run 1..........................71
Appendix 4. The Gompertz model analysis of Run 2………………..72
Appendix 5. The Gompertz model analysis of Run 3………………..73
Appendix 6. The Gompertz model analysis of Run 4………………..74
Appendix 7. The standard curve of standard Calf thymus DNA
concentration and fluorescent unit…..…………………75 Appendix 8. The colicin E7 nuclease activity assay in batch
cultivation with LB medium……..…………………….76
Appendix 9. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:0) with LB medium……..77
Appendix 10. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:1) with LB medium……78
Appendix 11. The colicin E7 nuclease activity assay in fed-batch
cultivation with SS medium………………………….79
Appendix 12. The colicin E7 nuclease activity assay in fed-batch
cultivation (glucose: YE = 1:1) with SS medium…….80







LIST OF FIGURES
Figure 1.1 Mechanism of cell killing by E-type nuclease colicins…….7
Figure 2.1 The process of fed-batch fermentation……………………26
Figure 3.1 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with LB medium in batch cultivation……………..………………...………………32
Figure 3.2 Time courses of cell growth and production of colicin E7
nuclease by recombinant E. coli with LB medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:0.....…………………..…35
Figure 3.3 Time courses of cell growth and production of colicin E7
nuclease by recombinant E. coli with LB medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:1...………………………36
Figure 3.4 The growth curve and acetate accumulation of 2III3-1 fractional factorial design…………………..………….40
Figure 3.5 Main effect plot of carbohydrate (glucose concentration)
with response of maximum dry cell weight……...…….42
Figure 3.6 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with SS medium in batch cultivation………………………………………….......47
Figure 3.7 Time courses of cell growth and production of colicin E7 nuclease by recombinant E. coli with SS medium in fed-batch cultivation. The ratio of glucose to yeast extract in the feeding solution was 1:1……………….……......50
Figure 3.8 SDS-PAGE analysis of purified colicin E7 nuclease.....51
















LIST OF TABLES
Table 1.1 Types of colicins………………...………………..................3
Table 1.2 Examples of nonspecific endonucleases participating in cell
defense……………………………………………………..12
Table 1.3 Methods for measuring nucleic acid concentrations……....14
Table 2.1 The three factors selected for the 2III3-1 fractional factorial
design………………………………………………………21
Table 2.2 The 2III3-1 fractional factorial design with the defining relation I=ABC………………………………………….....22
Table 3.1 The results of the 2III3-1 fractional factorial design.………...39
Table 3.2 Analysis of variance with response of maximum dry cell weight…..………………………...………………………41
Table 3.3 Analysis of variance with response of maximum cell growth
rate………………………………………….……………...43
Table 3.4 Analysis of variance with response of the lag time of cell
growth...................................................................................44
Table 3.5 Analysis of variance with response of acetate accumulation
……………………………………………………………..45
Table 3.6 Medium composition of LB medium and SS medium….....46
Table 3.7 Cell growth and nuclease activity of coliciny Im7 complex in batch and fed-batch culture with different mediums and weight ratio of glucose to yeast extract in the feeding stream………………………………………………………52














LIST OF TABLES
Table 1.1 Types of colicins………………...………………..................3
Table 1.2 Examples of nonspecific endonucleases participating in cell
defense……………………………………………………..12
Table 1.3 Methods for measuring nucleic acid concentrations……....14
Table 2.1 The three factors selected for the 2III3-1 fractional factorial
design………………………………………………………21
Table 2.2 The 2III3-1 fractional factorial design with the defining relation I=ABC………………………………………….....22
Table 3.1 The results of the 2III3-1 fractional factorial design.………...39
Table 3.2 Analysis of variance with response of maximum dry cell weight…..………………………...………………………41
Table 3.3 Analysis of variance with response of maximum cell growth
rate………………………………………….……………...43
Table 3.4 Analysis of variance with response of the lag time of cell
growth...................................................................................44
Table 3.5 Analysis of variance with response of acetate accumulation
……………………………………………………………..45
Table 3.6 Medium composition of LB medium and SS medium….....46
Table 3.7 Cell growth and nuclease activity of coliciny Im7 complex in batch and fed-batch culture with different mediums and weight ratio of glucose to yeast extract in the feeding stream………………………………………………………52
Andersson, L., S. Yang, P. Neubauer, and S.-O. Enfors. 1996. Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J. Biotechnol. 46: 255–263.
Anthony, L. C., H. Suzuki, and M. Filutowicz. 2004. Tightly regulated vectors for the cloning and expression of toxic genes. J. Microbiol. Meth. 58: 243–250.
Babu, K. R., S. Swaminathan, S. Marten, N. Khanna, and U. Rinas. 2002. Production of interferon-a in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl. Microbiol. Biotechnol. 53: 655–660.
Benedetti, H., C. Lazdunski, and R. Lloubes. 1991. Protein import into Escherichia coli: Colicins A and E1 interact with a component of their translocation system. EMBO J. 10: 1989–1995.
Bentley, W. E., N. Mirjalili, D. C. Andersen, R. H. Davis, and D. S. Kompala. 1990. Plasmid-encoded protein: The principal factor in the ‘metabolic burden’ associated with recombinant bacteria. Biotechnol. Bioeng. 35: 668–681.
Chak, K. F., W. S. Kuo, F. M. Lu, and R. James. 1991. Cloning and characterisation of the cole7 plasmid. J. Gen. Microbiol. 137: 91–100.
Chak, K. F., M. K. Safo, W. Y. Ku, S. Y. Hsieh, and H. S. Yuan. 1996. The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc. Natl. Acad. Sci. USA. 93: 6437–6442.
Chak, K. F., S. Y. Hsieh, C. C. Liao, and L. S. Kan. 1998. Change of thermal stability of colicin E7 triggered by acidic pH suggests the existence of unfolded intermediate during the membrane-translocation phase. Proteins. 32: 17–25.
Chen, C. W., B. C. Lei, K. W. Yeh, K. J. Duan. 2003. Recombinant sweet potato sporamin production via glucose/pH control in fed-batch culture of Saccharomyces cerevisiae, Process Biochem. 38 (8):1223–1229.
Choi, D. B., and E.Y. Park. 2006. Enhanced production of mouse ��-amylase by feeding combined nitrogen and carbon sources in fed-batch culture of recombinant Pichia pastoris. Process Biochem. 41: 390–397.
Cramer, W. A., F. D. S. Cohen, A. R. Merril, and H. Y. Song. 1990. Structure
and dynamics of colicin E1 channel. Mol. Microbiol. 4: 510–526.
Curless, C., J. Pope, and L. Tsai. 1990. Effect of preinduction specific growth rate on recombinant alpha consensus interferon synthesis in Escherichia coli. Biotechnol. Prog. 6: 149–152.
Da-Silva, S. S., I. S. Sajan, and M. D. Relvas. 2003. Recombinant human DNase in the management of persistent atelectasis in a ventilated pediatric population. 124(4): S69-S72.
Dennis, C. A., H. Videler, R. A. Pauptit, R. Wallis, R. James, G. R. Moore, and C. Kleanthous. 1998. A structural comparison of the colicin immunity protein Im7 and Im9 gives new insights into the molecular determinants of immunity-protein specificity. Biochem. J. 333: 183–191.
Di Masi, R. D., J. E. White, C. A. Schnaitman, and C. Bradbeer. 1973. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115: 506–513.
Dodge, T. C., and J. M. Gerstner. 2002. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli. J. Chem. Technol. Biotechnol. 77: 1238–1245.
Donovan, R. S., C. W. Robinson, and B. R. Glick. 1996. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16:145–154.
Focareta, T., P. A. Manning. 1991. Distinguishing between the extracellular DNases of Vibrio cholerae and development of a transformation system. Mol. Microbiol. 5: 2547–2555.
Georgiou, G. 1988. Optimizing the production of recombinant proteins in microorganisms. AICHE J. 34: 1233–1248.
Gonda, I. 1996. Inhalation therapy with recombinant human deoxyibo -nuclease I. Adv. Drug Deliv. Rev. 19:37-46.
Grafi, G., and B. A. Larkins. 1995. Activity of single-stranded DNA endonucleases in mung bean is associated with cell division. Plant. Mol. Biol. 29: 703–710.
Greasham, R., and E. Inamine. 1986. in: A.L. Demain, N.A. Solomon (Eds.). Manual of industrial microbiology and biotechnology. American Society for Microbiology press. Washington, DC. p. 41.
Harrison, J. S., E. Keshavarz-Moore, P. Dunnill, M. J. Berry, A. Fellinger, and L. Frenken. 1997. Factors affecting the fermentative production of a lysozyme-binding antibody fragment in Escherichia coli. Biotechnol. Bioeng. 53(6): 611–622.
Harcum, S. W., D. M. Ramirez, and W. E. Bentley. 1992. Optimal nutrient feed policies for heterologous protein production. Appl. Biochem. Biotechnol. 34/35: 161–73.
Han, K., H. C. Lim, and J. Hong. 1992. Acetic acid formation in Escherichia coli fermentation. Biotechnol. Bioeng. 39: 663– 671.
Hellmuth, K., D. J. Korz, E. A. Sanders, and W. D. Deckwer. 1994. Effect of growth rate on stability and gene expression of recombinant plasmids during continuous and high cell density cultivation of Escherichia coli TG1. J. Biotechnol. 32: 289–298.
Horn, U., W. Strittmatter, A. Krebber, U. Knupfer, M. Kujau, R. Wenderoth, K. Muller, S. Matzku, A. Pliuckthum, and D. Riesenberg. 1996. High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46: 524–532.
Hsia, K. C., K. F. Chak, P. H. Liang, Y. S. Cheng, W. Y. Ku, and H. S. Yuan. 2004. DNA binding and degradation by the HNH protein ColE7. Structure. 12: 205–214.
Hsia, K. C., C. L. Li, and H. S. Yuan. 2005. Structural and functional insight
into sugar-nonspecific nucleases in host defense. Curr. Opin. Struct. Biol. 15: 126–134.
James, R., C. Kleanthous, and G. R. Moore. 1996. The biology of E colicins: paradigms and paradoxes. Microbiology. 142: 1569–1580.
Jung, G., P. Denefle, J. Becquart, and J. F. Mayaux. 1988. High-cell density fermentation studies of recombinant Escherichia coli strains expressing human interleukin-1b. Ann. Inst. Pasteur Microbiol. 139: 129–146.
Kleman, G. L., and W. R. Strohl. 1994. Developments in high cell density and high productivity microbial fermentation. Curr. Opin. Biotechnol. 5: 180–186.
Kleanthous, C., and D. Walker. 2001. Immunity proteins: enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 26: 624-631.
Ko, T. P., C. C. Liao, W. Y. Ku, K. F. Chak, and H. S. Yuan. 1999. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure. 7(1): 91–103.
Korz, D. J., U. Rinas, K. Hellmuth, E. A. Sanders, and W. D. Deckwer. 1995. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 39: 59– 65.
Koh, B. T., U. Nakashimada, M. Pfeiffer, and M. G. S. Yap. 1992. Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol. Lett. 14: 1115–1118.
Lazdunski, C. J. 1995. Colicin import and pore formation: A system for studying protein transport across membranes? Mol. Microbiol. 16: 1059–1066.
Lazdunski, C. J., E. Bouveret, A. Rigal, L. Journet, and R. Lloube`s H. Be`ne`detti. 1998. Colicin import into Escherichia coli cells. J. bacterial. 180(90): 4993–5002.
Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98–105.
Li, X., Robbins, J. W. Jr., and K. B. Taylor. 1990. The production of recombinant beta-galactosidase in Escherichia coli in yeast extract enriched medium. J. Ind. Microbiol. 5: 85–94.
Li, Y., J. Chen, Y. Y. Mao, S. Y. Lun, and Y. M. Koo. 1998. Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli, Process Biochem. 33(7): 709–714.
Locke, I. C., and B. G. Carpenter. 2004. Functional characteristics of the streptococcal deoxyribonuclease ‘streptodornase’, a protein with DNase activity present in the medicament Varidase®. Enzyme Microb. Technol. 35: 67-73.
Loontiens, F. G., P. Regenfuss, A. Zechel, L. Dumortier, and R. M. Clegg. 1990. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry. 29:9029–9039.
Luscombe, N. M., and J. M. Thornton. 2002. Protein–DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol. 320: 991–1009.
Montgomery, D. C. 1996. Design and analysis of experiments. John Wiley and Sons press. United States of America. p. 372-373.
Nancib, N., C. Branlant, and J. Boudrant. 1991. Metabolic roles of peptone and yeast extract for the culture of a recombinant strain of Escherichia coli. J. Ind. Microbiol. 8: 165–170.
Ogawa, T., K. Tomita, T. Ueda, K. Watanabe, T. Uozumi, and H. Masaki. 1999. A cytotoxic ribonuclease targeting specific transfer RNA codons. Science. 283: 2097–2100.
Ohno-Iwashita, Y., and K. Imahori. 1980. Assignment of the functional loci in colicin E2 and E3 molecules by the characterization of their proteolytic fragments. Biochemistry. 19: 652-659.
Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey. 1999. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J. Biotechnol. 75: 161–172.
Panda, A. K., R.H. Khan, S. Mishra, K.B.C. Appa Rao, and S.M. Totey. 2000. Influences of yeast extract on specific cellular yield of ovine growth hormone during fed-batch fermentation of E. coli. Bioprocess eng. 22: 379–383.
Pack, P., M. Kujau, V. Schroeckh, U. Knupfer, R. Wenderoth, D. Reisenberg, and A. Pluckthun. 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Bio/Technology. 11: 1271–1277.
Pilsl, H., V. Braun. 1995. Novel colicin 10: Assignment of four domains to
TonB- and TolC-dependent uptake via the Tsx receptor and to pore
formation. Mol. Microbiol. 16:57–67.
Phumathon, P., and G. M. Stephens. 1999. Production of toluene cis-glycol using recombinant Escherichia coli strains in glucose-limited fed batch culture. Enzyme Microb. Technol. 25: 810–819.
Pugsley, A. P. 1984a. The ins and outs of colicins. Part I. Production and translocation across membranes. Microbiol. Sci. 1:168–175.
Pugsley, A. P. 1984b. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol. Sci. 1:203–205.
Sakamoto, S., M. Iijima, H. Matsuzawa, and T. Ohta. 1994. Production of thermophilic protease by glucose-controlled fed-batch culture of recombinant Escherichia coli. J. Ferment. Bioeng. 78(4): 304-309.
Sambrook, J. and D. W. Russell. 2001. Molecular cloning / a laboratory manual. Third edition. Cold spring harbor Press, New York.
Seo, D. J., B. H. Chung, Y. B. Hwang, and Y. H. Park. 1992. Glucose-limited fed-batch culture of Escherichia coli for production of recombinant human interleukin-2 with the DO-stat method. J. Ferment. Bioeng. 74: 196–198.
Shin, C. S., M. S. Hong, C. S. Bae, and J. Lee. 1997. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol. Prog. 13:249–257.
Shiloach, J., J. Kaufman, A. S. Guillard, and R. Fass. 1996. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (hDE3) and Escherichia coli JM 109. Biotech. Bioeng. 49: 421-428.
Shimizu, N., S. Fukuzono, N. Nishimura, Y. Odawara, and K. Fujiwara. 1987. Cultivation of E. coli harboring hybrid plasmids. J. Ferment. Technol. 65: 7–10.
Shimizu, M., S. Iijima, and T. Kobayashi. 1992. Production of insecticidal protein of Bacillus thuringiensis by cultivation of recombinant Escherichia coli. J. Ferment. Bioeng. 74:163–168.
Srinivasan, E., and V. Shankar. 2001. Sugar non-specific endonucleases. FEMS Microbiol. Rev. 25: 583–613.
Tokuda, H., and Konisky, J. 1979. Effect of colicins Ia and E1 on ion permeability of liposomes. Proc. Natl. Acad. Sci. USA. 76: 6167–6171.
Tomson, K. T. Paalme, P. S. Laakso, and R. Vilu. 1995. Automatic laboratory scale fed-batch procedure for production of recombinant proteins using inducible expression systems of Escherichia coli. Biotechnol. Tech. 9: 793–798.
Turner, C., M. E. Gregory, and M. K. Turner. 1994. A study of the effect of specific growth rate and acetate on recombinant protein production of Escherichia coli JM107. Biotechnol. Lett. 16: 891–896.
Yee, L., and H. W. Blanch. 1992. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Bio/Technology. 10: 1550–1556.
Yee, L., and H. W. Blanch. 1993. Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol. Bioeng. 41: 781–790.
Verner, K., and G. Schatz. 1988. Protein translocation across membranes. Science. 241: 1307–1311.
Wong, I., A. Hernandez, M. A. Garca, R. Segura, and I. Rodrguez. 2002. Fermentation scale up for recombinant K99 antigen production cloned in Escherichia coli MC1061 I. Process Biochem. 37: 1195–1199.
Zabriskie, D. W., and E. J. Arcuri. 1986. Factors influencing productivity of fermentations employing recombinant microorganisms. Enzyme Microb. Technol. 8: 706–717.
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. van’t Riet. 1990. Modeling of the bacterial growth curve. Appl. Env. Microbiol. 56(6): 1875-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top