跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱維
研究生(外文):Yu-Wei Chen
論文名稱:以網格為基礎可抵抗幾何攻擊之強靭性數位浮水印技術
論文名稱(外文):Mesh-Based Robust Digital Watermarking Technique Against Geometric Attacks
指導教授:黃有評黃有評引用關係
指導教授(外文):Yo-Ping Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:51
中文關鍵詞:浮水印特徵點三角網格幾何攻擊
外文關鍵詞:watermarkfeature pointstri-meshgeometric attacks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
目前現存的數位浮水印技術裡的最大挑戰就是對抵抗幾何攻擊能力的不足。幾何攻擊可以分為兩個類別:整體破壞,例如旋轉、位移;以及區域破壞,例如Stirmark標準攻擊。我們發現多種以抵抗幾何攻擊為本質而設計的數位浮水印技術,缺乏抵抗多重混合幾何攻擊的能力。在此篇論文中,我們將浮水印實作在灰階認證影像上,並提出一個利用區域三角網格的特徵點來定位以抵抗混合型幾何攻擊的強靭性數位浮水印。我們提出的方法可以重新定位被攻擊影像並且可與嵌入和認證浮水印程序獨立運作。我們使用的幾何不變機制與互補調變嵌入策略來提高對幾何攻擊的強靭性。最後,藉由實驗結果證明我們的方法對幾何攻擊的效果相當好。
The great challenge of existing watermarking methods is their limited resistance to the extensive geometric attacks. Geometric attacks can be decomposed into two classes: global distortion such as rotations and translations and local distortion such as the StirMark attack. We have found that the weakness of multiple watermark embedding methods that were initially designed to resist geometric attacks is their inability to withstand the combination of geometric attacks. In this thesis, the watermark is used in the gray-scale authentication image, and a robust image watermarking scheme is proposed that can withstand the geometric attacks through using local tri-mesh feature points. Our proposed method can re-synchronize the attacked images and is independent of the embedding and authentication process. The geometric invariant scheme is combined with the complementary modulation embedding strategy to enhance the resistance of geometric attacks. The experimental results verify that the proposed scheme is excellent for geometric attacks.
CHINESE ABSTRACT i
ABSTRACT ii
LIST OF FIGURES v
LIST OF TABLES vi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Objectives 2
1.3 Thesis Organization 3
CHAPTER 2 BACKGROUND AND RELATED WORK 4
2.1 Digital Watermarking Techniques 4
2.1.1 Information Hiding 4
2.1.2 Categories of Watermark 5
2.1.3 Requirements of Watermark 7
2.1.4 Applications 9
2.2 Attacks on Watermarks 11
2.2.1 Removal Attacks 11
2.2.2 Geometric Attacks 11
2.2.3 Cryptographic Attacks 12
2.2.4 Protocol Attacks 13
2.3 Discrete Wavelet Transformation 14
2.4 Human Visual System Model in DWT Domain 16
2.4.1 Display Visual Resolution 16
2.4.2 Spatial Frequency 16
2.4.3 Detection Threshold 16
2.5 Complementary Modulation 18
2.5.1 The Behaviors of Transformed Coefficients under Attacks 18
2.5.2 Complementary Modulation Rules 18
2.6 Robust Feature Extraction 21
CHAPTER 3 OUR PROPOSED WATERMARKING METHOD 23
3.1 Watermark Encoding 23
3.1.1 Selection of Tri-mesh Feature Points 23
3.1.2 Normalization of Tri-mesh Feature Point Coordinates 25
3.1.3 Selection of Wavelet Coeffiecients 26
3.1.4 Bipolar Watermark Hiding 27
3.2 Watermark Decoding 29
3.2.1 Hotelling Transform 30
3.2.2 Rotation Detection 31
3.2.3 Scaling Detection 31
3.2.4 Flipping Detection 32
3.2.5 Watermark Detection 32
CHAPTER 4 EXPERIMENTAL RESULTS 35
4.1 Experimental Environment 35
4.2 Environmental Results 37
4.3 Comparison 42
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 47
REFERENCES 48
[1]Chih-Ming Chen, “A robust image watermarking method based on wavelet transform and human visual system,” Master Thesis of Department of Electronic Engineering, Chung Yuan Christian University, 2001.
[2]A.B. Watson, G.Y. Yang, J.A. Solomon and J.V. Villasenor, “Visibility of wavelet quantization noise,” IEEE Trans. on Image Processing, vol. 6, no. 8, pp.1164-1175, Aug. 1997.
[3]A.S. Lewis and G. Knowles, “Image compression using the 2-D wavelet transform,” IEEE Trans. on Image Processing, vol. 1, pp.244-250, April 1992.
[4]C.S. Lu, S.K. Huang, C.J. Sze and H.Y.M. Liao, “Cocktail watermarking for digital image protection,” IEEE Trans. on Multimedia, vol. 2, pp.209-224, Dec. 2000.
[5]C.S. Lu, S.W. Sun, C.Y. Hsu and P.C. Chang, “Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection,” IEEE Trans. on Multimedia, vol. 8, no. 4, pp.668-685, Aug. 2006.
[6]C.S. Lu and C.Y. Hsu, “Geometric distortion-resilient image hashing scheme and its applications on copy detection and authentication,” ACM Multimedia Systems Journal, vol. 11, no. 2, pp.159-173, Dec. 2005.
[7]C.S. Lu and H.Y.M. Liao, “Multipurpose watermarking for image authentication and protection,” IEEE Trans. on Image Processing, vol. 10, no. 10, pp.1579-1592, Oct. 2001.
[8]C.W. Tang and H.M. Hang, “A feature-based robust digital image watermarking scheme,” IEEE Trans. on Signal Processing, vol. 51, no. 4, pp.950-958, April 2003.
[9]C.Y. Lin, M. Wu, J.A. Bloom, I.J. Cox, M.L. Miller and Y.M. Lui, “Rotation, scale and translation resilient watermarking for images,” IEEE Trans. on Image Processing, vol. 10, no. 5, pp.767-782, May 2001.
[10]D. Levicky and P. Foris, “Human visual system models in digital image watermarking,” Radio Engineering, vol. 13, no. 4, pp.38-43, Dec. 2004.
[11]D. Kundur and D. Hatzinakos, “A robust digital image watermarking method using wavelet-based fusion,” in Proc. 4th IEEE Int. Conf. on Image Processing, pp.544-547, Oct. 1997.
[12]D. Kundur and D. Hatzinakos, “Digital watermarking using multi-resolution wavelet decomposition,” in Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, vol. 5, pp.2969-2972, May 1998.
[13]D. Zheng, J. Zhao and A. El Saddik, “RST-invariant digital image watermarking based on log-polar mapping and phase correlation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 8, pp.753-765, Aug. 2003.
[14]F. Petitcolas, R.J. Anderson and M.G. Kuhn, “Attacks on copyright marking systems,” in Proc. Int. Workshop on Information Hiding, LNCS 1575, pp.219-239, April 1998.
[15]H. Inoue, A. Miyazaki, A. Yamamoto and T. Katsura, “A digital watermark based on the wavelet transform and its robustness on image compression and transformation,” IEICE Trans. Fund. Electron., Commun., Comput. Sci., vol. E82-A, pp.2-10, Jan. 1999.
[16]J. O'Ruanaidh and T. Pun, “Rotation, scale and translation invariant spread spectrum digital image watermarking,” Signal Processing, vol. 66, no. 3, pp. 303-317, May 1998.
[17]K. Mikolajczyk and C. Schmid, “An affine invariant interest point detector,” Proc. European Conference on Computer Vision (ECCV), LNCS 2350, pp.128-142, 2002.
[18]M. Alghoniemy and A.H. Tewfik, “Geometric invariance in image watermarking,” IEEE Trans. on Image Processing, vol. 13, no. 2, pp.145-153, Feb. 2004.
[19]M. Barni, F. Bartolini and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. on Image Processing, vol. 10, no. 5, pp.783-791, May 2001.
[20]M.D. Swanson, M. Kobayashi and A.H. Tewfik, “Multimedia data embedding and watermarking technologies,” Proc. IEEE, vol. 86, pp.1064-1087, June 1998.
[21]M. Kutter, “Watermarking resisting to translation, rotation, and scaling,” Proc. SPIE International Symposium on Voice, Video, and Data Communication, vol. 3528, pp.523-531, Nov. 1998.
[22]M. Kutter and S. Winkler, “A vision-based masking model for spread-spectrum image watermarking,” IEEE Trans. on Image Processing, vol. 11, no. 1, pp.16-25, Jan. 2002.
[23]P. Bas, J.M. Chassery and B. Macq, “Geometrically invariant watermarking using feature points,” IEEE Trans. on Image Processing, vol. 11, no. 9, pp.1014-1028, Sep. 2002.
[24]R.B. Wolfgang, C.I. Podilchuk and E.J. Delp, “Perceptual watermarks for digital images and video,” Proc. IEEE, vol. 87, pp.1108-1126, July 1999.
[25]S. Pereira and T. Pun, “Robust template matching for affine resistant image watermarks,” IEEE Trans. on Image Processing, vol. 9, no. 6, pp.1123-1129, June 2000.
[26]S. Pereira and T. Pun, “An iterative template matching algorithm using the chirp-Z transform for digital image watermarking,” Pattern Recognition, vol. 33, pp.173-175, Jan. 2000.
[27]S.W. Sun, T.T. Lu and P.C. Chang, “Image watermarking synchronization by significant MSB plane matching,” Pacific-Rim Conference on Multimedia (PCM), LNCS 2532, pp.468-476, Dec. 2002.
[28]Y. Liu and J. Zhao, “A robust RST invariant image watermarking method based on locally detected features,” IEEE International Workshop on Haptic Audio Visual Environments and Their Applications, pp.133-138, Oct. 2005.
[29]S. Craver, et. al., “On the invertibility of invisible watermarking techniques,” Proc. IEEE Int. Conf. Image Processing, vol. 1, pp.540-543, Oct 1997.
[30]M. Kutter, S. Voloshynovskiy and A. Herrigel, “Watermark copy attack,” IS&T/SPIE’s 12th Annual Symp., Electronic Imaging 2000: Security and Watermarking of Multimedia Content II, P. W. Wong and E. J. Delp, Eds., SPIE Proc., vol. 3971, San Jose, CA, Jan. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top