|
[1]B. Sklar, Digital Communications- Fundamentals and Applications. Prentice Hall, 1988. [2]A. J. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Trans. Commun., vol. COM-19, pp. 751-772, Oct. 1971. [3]A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IE13, pp. 260-269, April 1967. [4]G. D. Forney Jr. “The Viterbi Algorithm,” Proc. IEEE , vol 61, pp. 268 - 278, March 1973. [5]H. I. Lou, “Implementing the Viterbi algorithm,” IEEE Signal Processing Magazine, pp.42-52, Sep. 1995. [6]H. Hendrix, “Viterbi Decoding Techniques in the TMS320C54x Family,” Texas Instruments, June 1996. [7]M. D. Shieh, C. M. Wu, H. H. Chou, M. H. Chen and C. L. Liu, “Design and implementation of a DAB channel decoder,” IEEE Trans. on Consumer Electronics, Vol. 45, No. 3, pp. 553-556, Aug. 1999. [8]P. K. Singh and S. Jayasimha, “A low-complexity, reduced-power Viterbi algorithm,” in Proc. 12th International Conf. on VLSI Design, Goa, India, pp 61-66, Jan. 1999. [9]G. Kang and P. Zhang “The implementation of Viterbi decoder on TMS320C6201 DSP in W-CDMA system,” in Proc. IEEE International Conf. on Communication Technology, vol.2, pp. 1693-1696, 2000. [10]J. J. Chang, D. J. Hwang and M. C. Lin, “Some extended results on the search for good convolutional codes,” IEEE Trans. Inform. Theory, Vol. 43, No.5, pp. 1682-1697, Sept. 1997. [11]D. G. Daut, J. W. Modestino and L. D. Wismer, “New short constraint length convolutional codes constructions for selected rational rates,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 794-800, Sept. 1982. [12]Paaske, “Short binary convolutional codes with maximal free distance for rates 2/3 and 3/4,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 683–688, September 1974. [13]S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall, 1995. [14]I. E. Bocharova and B. D. Kudryashov, “Rational rate punctured convolutional codes for soft-decision Viterbi decoding,” IEEE Trans. Inform. Theory, vol. 43, No. 4, pp. 1305-1313, July 1997. [15]K. J. Larsen, “Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4,” IEEE Trans. Inform. Theory, vol. IT-19, pp.371-372, May 1973. [16]P. Frenger, P. Orten and T. Ottosson, “Convolutional codes with optimum distance spectrum,” IEEE Communications Letters, Vol. 3, No. 11, pp. 317-319, Nov. 1999. [17]A. Graell i Amat, G. Montorsi and S. Benedetto, “A new approach to the construction of high-rate convolutinal codes,” IEEE Comunications Letters, vol. 5, no. 11, pp. 453-455, Nov. 1989. [18]P. Elias, “Coding for Noisy Channels,” IRE Convention Record, pt. 4, pp. 37-46, Mar. 1955. [19]S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, 2004. [20]Proakis, Digital Communications, McGraw-Hill, 1995. [21]R. Johannesson and K. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press, New York, 1999. [22]J. A. Heller and I. M. Jacobs, “Viterbi decoding for satellite and space communications,” IEEE Transactions on Commun., vol. COM-19, pp. 835-848, October 1971. [23]P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 27, pp. 1877–1885, Dec. 1992. [24]A. K. Yeung and J. M. Rabaey, “ A 210Mb/s radix-4 bit-level pipelined Viterbi decoder,” in Proc. IEEE International Solid-State Circuit Conf., pp. 88-89, Feb. 1995. [25]E. Paaske and J. D. Andersen, “High Speed VITERBI Decoder Architecture,” First. ESA Workshop on Tracking, Telemetry and Command Systems, ESTEC June 1998. [26]E. Casseau and E. Luthi, “Architecture of a high-rate VLSI Viterbi decoder,” in Proc. Third International Conf. on Electronics, Circuits and System, Rodos, Greece, pp. 21-24, October 1996. [27]R.V.K Pillai and P. D’Arcy, “On high speed add-compare-select for Viterbi decoders,” in Proc. Canadian Conf. on Electrical and Computer Engineering, pp. 1193-1198, May 2001. [28]Y. H. Hsu, C. Y. Hsu and T. S. Kuo, “Low Complexity Radix-4 Butterfly Design for the Viterbi Decoder,” in Proc. IEEE 64th Vehicular Technology Conf., Montreal, Cannada, Sept. 2006. [29]C. Y. Hsu, T. S. Kuo and Y. H. Hsu, “Low Complexity Radix-4 Butterfly Design for the Soft-Decision Viterbi Decoder,” Journal of Microprocessors and Microsystems. (Accepted in February, 2, 2006) [30]ETS 300 401: Radio broadcasting system; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers, Feb. 1995. [31]Eureka-147, Digital audio broadcasting system, www.eurekadab.org, April 2002. [32]IEEE, IEEE Standard VHDL Language Reference Manual, std 1076-1933, 1933. [33]P. J. Ashenden, The Designer’s Guide to VHDL, 2nd Edition, Morgan Kaufmann Publishers, 2002. [34]Xilinx Inc., http://www.xilinx.com. [35]C. Y. Hsu and T. S. Kuo, “A butterfly structure for rate 2/n convolutional codes,” IEICE Trans. on Fundamentals of Electronics, Communications and Computers Science, vol.E89-A, No. 2, pp.630-632, Feb. 2006. [36]C. Y. Hsu and T. S. Kuo, “A butterfly structure for rate 2/n convolutional codes,” Proceedings of 5th International Conference on Information, Communication and Signal Processing, Tailand, pp. 776-780 Dec. 2005. [37] T. S. Kuo and C. Y. Hsu, “A butterfly structure for rate k/n convolutional codes,” Proceedings of the IEEE Symposium on Signal Processing and Information Technology, Greece, pp. 528-533, Dec., 2005. [38]T. S. Kuo and C. Y. Hsu, “Butterfly structure for Viterbi decoders of all rates k/n,” IEICE Trans. on Fundamentals of Electronics, Communications and Computers science, vol.E90-A, No. 2, pp.37-44, Feb. 2007. [39]C. Y. Hsu and T. S. Kuo, “Low Complexity Convolutional Codes of Rate 2/n,” Journal of the Chinese Institute of Engineers. (Accepted in September, 3, 2006) [40]C. Y. Hsu and T. S. Kuo, “Low Complexity Convolutional Codes Using the Branch Symmetry,” IEEE communications letters. (Submitted in October, 30, 2006) [41]J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits,” IEEE Trans. Comput., Vol. C-17, pp.330-337, Apr. 1968. [42]L. R. Bahl. C. D. Cullum. W. D. Frazer, and F. Jelinek, “An efficient algorithm for computing the free distance,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 437-439, Nov. 1972. [43]K. J. Larsen, “Comments on �SAn efficient algorithm for computing the free distance�S ,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 577-579, July 1973. [44]M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum of convolutional codes,” IEEE Trans. Inform. Theory, Vol. IT-35, No. 6, pp.1146-1159, Nov. 1989. [45]J. Conan, “The weight spectra of some short low-rate convolutional codes,” IEEE Trans. Commun., vol. COM-32, pp. 1050-1053, Sept. 1984. [46]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House Publishers, Boston, 2000. [47]C. Schlegel, Trellis Coding, IEEE Press, New York, 1997. [48]E. Biglieri, D. Divsalar, P. J. Mclane and M. K. Simon, Introduction to Trellis-Coded Modulation with Applications, Macmillan, Canada, 1991.
|