跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃儀芬
研究生(外文):Yi-Fen Huang
論文名稱:具���陸簳�代三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
論文名稱(外文):Synthesis, Photoluminescence and Electrochromism of NovelAromatic Polymers with N-indolyltriphenylamine Moiety
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:132
中文關鍵詞:電致變色
外文關鍵詞:Electrochromism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含三個研究主題, 第一部分在描述在主鏈上含有
N-indolyltriphenylamine 基團之新穎芳香族聚醯胺及聚醯亞胺之合成與
性質。一種由����(indole)所衍生的新型含三苯胺結構的二胺單體
4-(N-indolyl)-4’,4”-diaminotriphenylamine 是在氟化銫共存下由
N-(4-aminophenyl)indole 和4-fluoronitrobenzene 進行芳香親核取代反
應,然後再以聯胺和鈀觸媒催化還原二硝基中間產物而製得。具有
N-indolyltriphenylamine 基團之非晶型及有機可溶性之聚醯胺是由芳香
族二羧酸和上述所合成出之二胺進行磷酸化聚縮合反應而製得。聚醯亞
胺是由二胺與二酐先行開環聚加成反應成聚醯胺酸後再利用加熱或化
學脫水劑脫水環化而得。所有聚醯胺均很容易溶解在極性的有機溶劑
中,並可經由它們的溶液塗佈鑄成可撓曲性及強軔的薄膜。聚醯亞胺薄
膜則可經由他們的聚醯胺酸[poly(amic acid)s] 薄膜加熱脫水環化而製
得。這些聚合物具有高的玻璃態轉移溫度(Tg),其值約在296與316 ℃之
間,它們亦具備很好的熱安定性,聚醯胺可耐熱至500 ℃以上,聚醯亞
胺可耐熱至600 ℃以上。這些聚合物的氧化還原行為是用循環伏安法
(cyclic voltammetry; CV)測定之,大部分的聚合物具有一個可逆的氧化程
序,部分的聚醯胺顯示另一個不可逆的氧化程序。此外,這些聚合物大
致上均具有良好的電致變色特性,它們的薄膜顏色可從中性態的淡黃色轉變成氧化態的綠色或藍色。
本論文的第二部分是在探討一種含有 N-indolyltriphenylamine結構
的二羧酸所衍生出的新穎芳香族聚醯胺之合成與性質。一種新型二羧酸
單體4,4'-dicarboxy-4"-(N-indolyl)triphenylamine 是以氫化納當鹼由
N-(4-aminophenyl)indole和4-fluorobenzonitrile進行芳香親核取代反應,然
後再將二�咫介〃ㄙ宦P性水解而製得。一系列固有黏度介於0.75-1.28
dL/g的聚醯胺是由此二羧酸單體與一些芳香族二胺以Yamazaki直接磷酸
化聚縮合反應製備而得。所有的聚醯胺都可溶於多數的有機溶劑並可經
溶液鑄成強韌的薄膜。這些聚醯胺具有高的Tg (254–305 ℃),它們在氮氣
下分解掉10 %的熱重量損失溫度值可在 516 ℃以上,顯示出不錯的熱穩
定性。這些聚合物的 NMP 溶液 (10-5 M) 的光激發光譜顯示它們的最
大放光強度的波長 449-465 nm 之間,屬於藍光區,其螢光效率 (ΦF) 最
高可達15.0 %。
本論文最後一部分係探討以
4,4'-dicarboxy-4"-(N-indolyl)triphenylamine 為主體的新穎含���陸簹�
poly(amine-hydrazide)s 及poly(amine-1,3,4-oxadiazole)s 之合成與性質。
新穎之芳香族poly(amine-hydrazide)s是由上述之二羧酸與市售之芳香族
二醯�豸�4- 胺基苯醯�佶g由Yamazaki 磷酸化反應而製得。這些
poly(amine-hydrazide)s 可經熱脫水環化成
poly(amine-1,3,4-oxadiazole)s。這些聚合物溶在NMP的溶液中的UV/Vis
吸收光譜波長介於302-386 nm,而其光激發光譜顯示在藍光至綠光區,
波長在431-528 nm之間有最大放射強度,其量子效率最高可達33 %。 這
些聚合物的薄膜的循環伏安圖會顯示出含一對陽極氧化峰,其Eonset值介
於0.93與1.40 V之間,而在陰極亦會出現可逆的還原峰,Eonset值介於-1.39
至 -1.55 V 之間。
This thesis consists of three parts. The first part deals with the syntheses and characterization of novel aromatic poly(amine amide)s and poly(amine imide)s bearing a N-indolyltriphenylamine unit on the main chian. A new triphenylamine-based diamine monomer, 4-(N-indolyl)-4’,4”-diaminotriphenylamine (4) was synthesized via the cesium fluoride-mediated N,N-diarylation of N-(4-aminophenyl)indole with 4-fluoronitrobenzene, followed by palladium-on-charcoal-catalyzed hydrazine reduction of the dinitro intermediate. Amorphous and organosoluble poly(amine-amide)s were prepared by the phosphorylation polyamidation of the newly synthesized diamine monomer (4) with various aromatic dicarboxylic acids. Poly(amine imide)s were prepared in conventional two-step method by the reaction of diamine 4 with various aromatic dianhydrides to form poly(amic acid)s, followed by thermal or chemical cyclodehydration. Basic properties of these poly(amine amide)s and poly(amine imide)s, such as inherent viscosity, molecular weights, film-forming ability, mechanical properties, crystallinity, solubility, thermal properties, optical and electrochemical properties were investigated and compared with those of parent poly(amine amide)s and poly(amine imide)s derived from 4,4’-diaminotriphenylamine with the same aromatic diacids and dianhydrides.
The second part of this thesis describes the synthesis and properties of novel poly(amine-amide)s on the basis of 4,4'-dicarboxy-4"-(N-indolyl)triphenylamine (7). The
new triphenylamine-containing dicarboxylic acid monomer 8, was synthesized via the double N-arylation of 4-fluoroaniline with N-(4-aminophenyl)indole, followed by alkaline hydrolysis of the dinitrile intermediate. A new family of poly(amine amide)s with inherent viscosities of 0.75-1.28 dL/g were prepared by the direct phosphorylation polycondensation from the diacid monomer 7 with various aromatic diamines. All of the poly(amine amide)s were readily soluble in a variety of organic solvents and formed strong and tough films via solution casting. The wholly aromatic poly(amine-amide)s have useful levels of thermal stability associated with moderately high glass transtion temperatures (254–305 ℃) and 10 % weight loss temperatures in excess of 516 ℃ in nitrogen. The photoluminescence (PL) spectra of these polymers in N-methyl-2-pyrrolidone (NMP) solution (10-5M) exhibited a strong emission in the blue region at 449-465 nm.
The final part of this thesis reports the synthesis and properties of novel N-indoly poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s based on 4,4'-dicarboxy-4"-(N-indolyl)triphenylamin. Novel wholly aromatic poly(amine -hydrazide)s were synthesized via the Yamazaki phosphorylation reaction from the diacid and various commercially available aromatic dihydrazides, followed by thermal cyclodehydration to poly(amine-1,3,4-oxadiazole)s. All aromatic polymers exhibited strong UV-Vis absorption bands at 302-375 nm in NMP solution. The photoluminescence spectra showed maximum bands around 453-490 nm in the blue and green region. The hole-transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. For a comparative study, analogous poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s based on 4,4’-dicarboxytriphenylamine were also prepared and characterized.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT (in English) iv
ABSTRACT (in Chinese) vii

TABLE OF CONTENTS ix
LIST OF SCHEMES xiii
LIST OF TABLES xiii
LIST OF FIGURES xiv

PART I
Synthesis and Properties of Poly(amine amide)s and Poly(amine imide)s Based on 4,4’-Diamino-4”-fluorotriphenylamine
1
CHAPTER 1 INTRODUCTION 2
CHAPTER 2 EXPERIMENTAL 6
2.1 Materials 6
2.2 Monomer Synthesis 7
2.2.1 4-Fluoro-4’,4”-dinitrotriphenylamine (1) 7
2.2.2 4,4’-Diamino-4”-fluorotriphenylamine (2) 8
2.3 Polymer Synthesis 9
2.3.1 Preparation of Poly(amine amide)s by Diect Polycondensation via the Phosphorylation Reaction
9
2.3.2 Preparation of Poly(amine imide)s by Two-step Method via Thermal and Chemical Imidization Reaction
10
2.4 Preparation of the Poly(amine amide) Films 11
2.5 Measurements 12
CHAPTER 3 RESULTS AND DISCUSSION 15
3.1 Monomer Synthesis 15
3.2 Polymer Synthesis 21
3.3 Polymer Properties 29
3.3.1 Organo-solubility and X-ray Diffraction Data 29
3.3.2 Tensile Properties 32
3.3.3 Thermal Properties 34
3.3.4 Optical and Electrochemical Properties 40
3.3.5 Spectroelectrochemical and Electrochromic Properties 51
CHAPTER 4 CONCLUSIONS 55
REFERENCES 56

PART II
Synthesis and Properties of Poly(amine amide)s Based on 4,4’-Dicarboxy-4”-fluorotriphenylamine
61
CHAPTER 1 INTRODUCTION 62
CHAPTER 2 EXPERIMENTAL 66
2.1 Materials 66
2.2 Monomer Synthesis 66
2.2.1 4,4’-Dicyano-4”-fluorotriphenylamine (7) 66
2.2.2 4,4’-Dicarboxy-4”-fluorotriphenylamine (8) 68
2.3 Polymer Synthesis 69
2.4 Preparation of the Polyamide Films 69
2.5 Measurements 70
CHAPTER 3 RESULTS AND DISCUSSION 73
3.1 Monomer Synthesis 73
3.2 Polymer Synthesis 79
3.3 Polymer Properties 82
3.3.1 Organo-solubility and X-ray Diffraction Data 82
3.3.2 Tensile Properties 82
3.3.3 Thermal Properties 85
3.3.4 Optical and Electrochemical Properties 89
3.3.5 Spectroelectrochemical and Electrochromic Properties 94
CHAPTER 4 CONCLUSIONS 97
REFERENCES 99

PART III
Synthesis and Properties of Novel Blue- and Olivine-Light-Emitting Aromatic Poly(amine-hydrazide)s and Poly(1,3,4-oxadiazole)s Containing 4-Fluorotriphenylamine Unit
103
CHAPTER 1 INTRODUCTION 104
CHAPTER 2 EXPERIMENTAL 108
2.1 Materials 108
2.2 Polymer Synthesis 109
2.3 Film Preparation and Cyclodehydration of the Hydrazide Polymers. 110
2.4 Measurements 110
CHAPTER 3 RESULTS AND DISCUSSION 113
3.1 Polymer Synthesis 113
3.2 Polymer Solubility and Film Morphology 119
3.3 Thermal Properties of Polymers 120
3.4 Optical Properties 123
3.5 Electrochemical Properties and Electrochromic Behaviors 127
CHAPTER 4 CONCLUSIONS 131
REFERENCES 133















LIST OF SCHEMES
PART I
Scheme 1. Synthesis of diamine monomer 2 17
Scheme 2. Synthesis of poly(amine amide)s based on the fluorinated monomer 2
23
Scheme 3. Synthesis of poly(amine imide)s 6a-f 27
PART II
Scheme 1. Synthetic route to the target dicarboxylic acid monomer 8 75
Scheme 2. Synthesis of poly(amine amide)s based on monomer 8 80
PART III
Scheme 1. Synthesis of poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s
115

LIST OF TABLES
PART I
Table 1. Inherent viscosity and solubility behavior of poly(amine amide)s 30
Table 2. Inherent viscosity and solubility behavior of poly(amine imide)s
prepared via thermal (-T) or chemical (-C) imidization
31
Table 3. Thin film tensile properties of poly(amine amide)s and
poly(amine imide)s
33
Table 4. Thermal properties of poly(amine amide)s 37
Table 5. Thermal properties of poly(amine imide)s 39
Table 6. Optical and electrochemical properties of the poly(amine amide)s 44
Table 7. Optical and electrochemical properties of the poly(amine imide)s 45

PART II
Table 1. Solubility behavior of poly(amine amide)s 84
Table 2. Thin film tensile properties of poly(amine amide)s 84
Table 3. Inherent viscosities and thermal properties of poly(amine amide)s 87
Table 4. Optical and electrochemical properties of the poly(amine amide)s 91

PART III
Table 1. Inherent viscosity and solubility of poly(amine-hydrazide)s and
poly(amine-1,3,4-oxadiazole)s
116
Table 2. Thermal behavior of poly(amine-hydrazide)s and
poly(amine-1,3,4-oxadiazole)s
121
Table 3. Optical and electrochemical properties for poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s
124

LIST OF FIGURES
PART I
Figure 1. IR spectra of the synthesized compounds 1 and 2 18
Figure 2. 1H NMR spectrum of the synthesized monomer 2 in DMSO-d6 19
Figure 3. 13C NMR spectrum of the synthesized monomer 2 in DMSO-d6 20
Figure 4. Typical IR spectra of the poly(amine amide) 4h 24
Figure 5. 1H NMR spectra of poly(amine amide) 4a in DMSO-d6 24
Figure 6. Typical IR spectra of poly(amine imide) 6f 28
Figure 7. 1H NMR spectra of poly(amine imide) 6e in DMSO-d6 28
Figure 8. WAXD patterns of the poly(amine amide) thin films 4a-h 32
Figure 9. TMA curve of polyamide 4f with a heating rate 10 oC/ min 38
Figure 10. TGA curve of polyamide 4a with a heating rate 20 oC/ min 38
Figure 11. UV-Vis absorption and PL spectra of poly(amine amide)s 4a, 4c, 4g,
and 4h in NMP solutions (10-5M)
46
Figure 12. Cyclic voltammograms of (a) ferrocene (b) polyamide 4e film onto an indium-tin oxide (ITO)-coated glass substrate in CH3CN containing 0.1M TBAP. Scan rate = 0.1 V/s

47
Figure 13. Cyclic voltammetric behavior of poly(amine amide) (a) 4e and (b) 4’e in 0.1 M TBAP/acetonitrile at scan rate of 100 mV/s
48
Figure 14. UV-Vis absorption and PL spectra of poly(amine imide)s 6b, 6d, 6e, and 6f in NMP solutions (10-5M)
48
Figure 15. PL photographs of the solution poly(amine imide)s of 6b, 6d, 6e, and 6f before and upon UV exposure (excited at 365 nm)
49
Figure 16. Cyclic voltammograms poly(amine amide) 6c film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBAP at a sweep rate of 100 mV/s. The inset shows the CV curve of ferrocene as the standard


50
Figure 17. Electrochromic behavior of poly(amine amide) 4e thin film (in CH3CN with 0.1 M TBAP as supporting electrolyte) at (a) 0.00, (b) 0.65, (c) 0.76, (d) 0.87, (e) 0.98, (f) 1.09, (g) 1.20, (h) 1.33, (i) 1.44 V


53
Figure 18. Potential step absorptometry of poly(amine amide) 4e thin film (in CH3CN with 0.1 M TBAP as supporting electrolyte) by the application of a potential step (0.00 V �� 1.44 V) .

53
Figure 19. Electrochromic behavior of poly(amine imide) 6c thin film (in CH3CN with 0.1 M TBAP as supporting electrolyte) at (a) 0.00, (b) 0.80, (c) 0.92, (d) 1.05, (e) 1.17, (f) 1.30, (g) 1.46, (h) 1.58, (i) 1.67 V


54
Figure 20. Potential step absorptometry of poly(amine imide) 6c thin film (in CH3CN with 0.1 M TBAP as supporting electrolyte) by the application of a potential step (0.00 V �� 1.67 V) .

54

PART II
Figure 1. IR spectra of the synthesized compound 7 and monomer 8 76
Figure 2. (A) 1H NMR spectrum of 4,4’-dicyano-4”-fluorotriphenylamine in
CDCl3. (B) 1H NMR spectrum of
4,4’-dicarboxy-4”-fluorotriphenylamine in DMSO-d6

77
Figure 3. (A) 13C NMR spectrum of 4,4’-dicyano-4”-fluorotriphenylamine in
CDCl3. (B) 13C NMR spectrum of
4,4’-dicarboxy-4”-fluorotriphenylamine in DMSO-d6

78
Figure 4. The thin film FTIR spectra of polyamide 10a 81
Figure 5. WAXD patterns of polyamides 10a-f 83
Figure 6. TMA curve of polyamide 10a with a heating rate 10 oC/min 88
Figure 7. TGA curve of polyamide 10f with a heating rate 20 oC/min 88
Figure 8 Absorption and PL spectra of some poly(amine amide)s with a concentration of 10-5 M in NMP. The photograph shows the physical appearance of polyamide solution (10-5M) and thin films (thickness: 5 ~10 μm) before and after exposure on UV irradiation (excited at about 365 nm



92
Figure 9. Cyclic voltammogram of polyamide 10f film onto an indium-tin oxide (ITO)-coated glass substrate in CH3CN containing 0.1M TBAP, with a scan rate of 0.1 V/s. The inset show the CV curve of ferrocene as the reference.


93
Figure 10. Spectroelectrochemical behavior of polyamide 10f thin film in 0.1 M TBAP/acetonitrile at various applied potentials: (a) 0.00, (b) 0.16, (c) 0.32, (d) 0.48, (e) 0.64, (f) 0.80, (g) 0.96, (h) 1.12, (i) 1.44 V


96
Figure 11. Potential step absorptometry of polyamide 10f thin film (in CH3CN with 0.1 M TBAP as supporting electrolyte) by the application of a potential step (0.00 V �� 1.44 V)

96

PART III
Figure 1. IR spectra of poly(amine-hydrazide) I-IPH and poly(amine-1,3,4-
oxadiazole) III-IPH
117
Figure 2. DSC traces of poly(amine-hydrazide) I-IPH and poly(amine-1,3,4-
oxadiazole) III-IPH with a heating rate of 20 oC/ min in nitrogen
118
Figure 3. TGA curves of poly(amine-hydrazide) I-TPH and poly(amine-1,3,4-
oxadiazole) III-TPH with a heating rate of 20 oC/ min in nitrogen
118
Figure 4. TGA thermograms of poly(amine-1,3,4-oxadiazole)s III-TPH and IV-TPH at a heating rate of 20 oC/ min
122
Figure 5. UV-Vis absorptions and PL spectra of poly(amine-hydrazide)s in NMP solution (10-5 M). Quinine sulfate dissolved in 1 N H2SO4 (aq) (10-5 M) as the standard. (ΦF = 0.546)
125
Figure 6. UV-Vis absorptions and PL spectra of poly(amine-1,3,4-oxadiazole)s in NMP solution (10-5 M). Quinine sulfate dissolved in 1 N H2SO4 (aq) (10-5 M) as the standard. (ΦF=0.546)

125
Figure 7. The photoluminescence of poly(amine-hydrazide) solutions (10-5 M) and thin films (thickness: 5~10 μm) by UV irradiation (Excited at 365 nm). Quinine sulfate dissolved in 1 N H2SO4 (aq) (10-5 M) as the standard. (ΦF=0.546)


126
Figure 8. The photoluminescence of poly(amine-1,3,4-oxadiazole) solutions (10-5 M) and thin films (thickness: 5~10 μm) by UV irradiation (Excited at 365 nm). Quinine sulfate dissolved in 1 N H2SO4 (aq) (10-5 M) as the standard. (ΦF=0.546)


126
Figure 9. Cyclic voltammograms of poly(amine-hydrazide) I-TPH and II-TPH film onto an indium-tin oxide (ITO)-coated glass substrate in CH3CN (aq) containing 0.1 M TBAP. Scan rate = 0.1 V/s. (a) ferrocene (b) oxidation redox of poly(amine-hydrazide) I-TPH (c) oxidation redox of poly(amine-hydrazide) II-TPH



129
Figure 10. Electrochromic behavior of poly(amine-hydrazide) I-TPH thin film (in CH3CN(aq)) with 0.1 M TBAP as the supporting electrode) at 0.00 �� 1.70 V.

130
REFERENCES
1. Adachi, C.; Nagai, K. Tamoto, N. Appl. Phys. Lett. 1995, 66, 2679.
2. Shirota, Y. J. Mater. Chem. 2000, 10, 1.
3. Shirota, Y. J. Mater. Chem. 2005, 15, 79.
4. Bellman, E.; Shaheen, S. E.; Thayumannvan, S.; Barlow, S.; Grubbs, R. H.; Marder,
S. R.; Kippenlen, B.; Peyghambarian, N. Chem. Mater. 1998, 10, 1669.
5. Bellman, E.; Shaheen,S.E.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.;
Peyghambarian, N. Chem. Mater. 1999, 11, 399.
6. Lu, J. P.; Hlil, A. R.; Sun, Y.; Hay, A. S.; Maindron, T.; Dodelet, J.-P.; D’Iorio, M.
Chem. Mater. 1999, 11, 2501.
7. Wang, X. Q.; Nakao, M.; Ogino, K.; Sato, H.; Tan, H. M. Macromol. Chem. Phys.
2001, 202, 117.
8. Wang, X. Q.; Chen, Z. J.; Ogino, K.; Sato, H.; Strzelec, K.; Miyata, S.; Luo, Y. J.;
Tan, H. M. Macromol. Chem. Phys. 2002, 203, 739.
9. Fang, Q.; Yamamoto, T. Macromolecules 2004,37,5894.
10. Xiao, H. B.; Leng, B.; Tian, H. Polymer 2005, 46, 5705.
11. Cho, J.-S.; Kimoto, A.; Higuchi, M.; Yamamoto, K. Macromol. Chem. Phys. 2005,
206, 635.
12. Sun, M. H.; Li, J.; Li, B. S.; Fu, Y. Q.; Bo, Z. S. Macromolecules 2005, 38, 2651.
13. Liu, Y. Q.; Liu, M. S.; Li, X.-C.; Jen, A. K.-Y. Chem. Mater. 1998, 10, 3301.
14. Li, X.-C.; Liu, Y. Q.; Liu, Y. Q.; Liu, M. S.; Jen, A. K.-Y. Chem. Mater. 1999, 11,
1568.
15. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Adv. Mater.
1999, 11, 241.
50
16. Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K. Adv. Mater.
2002, 14, 809.
17. Shu, C.-F.; Dodda, R.; Wu, F.-I.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2003, 36,
6698.
18. Wu, F.-I.; Shih, P.-I.; Shu, C.-F.; Tung, Y.-L.; Chi, Y. Macromolecules 2005, 38,
9028.
19. Pu, Y.-J.; Soma, M.; Kido, J.; Nishide, H. Chem. Mater. 2001, 13, 3817.
20. Liang, F. S.; Pu, Y.-J.; Kurata, T.; Kido, J.; Nishide, H. Polymer 2005, 46, 3767.
21. Liang, F. S.; Kurata, T.; Nishide, H.; Kido, J. J. Polym. Sci. Part A: Polym. Chem.
2005, 43, 5765.
22. Miteva, T.; Meisel, A.; Knoll, W.; Northofer, H. G.; Scherf, U.; Muller, D. C.;
Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
23. Fu, Y. Q.; Li, Y.; Li, J.; Yan, S. K.; Bo, Z. S. Macromolecules 2004, 37, 6395.
24. Cassidy, P. E. Thermally Stable Polymers; Marcel Dekker: New York, 1980.
25. Yang, H. H. Aromatic High-Strength Fibers; Wiley: New York, 1989.
26. Wilson D.; Stenzenberger H. D.; Hergenrother P. M. Eds. Polyimides, Blackie:
Glasgow, 1990.
27. Ghosh M. K.; Mittal K. L., Eds. Polyimides: Fundamentals and Applications,
Marcel Dekker: New York, 1996.
28. Imai, Y. High Perform. Polym. 1995, 7, 337.
29. Imai, Y. React. Funct. Polym. 1996, 30, 3.
30. Hsiao, S. H.; Li, C. T. Macromolecules 1998, 31, 7213.
31. Liou, G. S.; Hsiao, S. H. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1786.
32. Espeso, J. F.; de la Campa, J. G.; Lozano, A. E.; de Abajo, J. J. Polym. Sci. Part A:
Polym. Chem. 2000, 38, 1014.
33. Eastmond, G. C.; Paprotny, J.; Irwin, R. S. Polymer 1999, 40, 469.
34. Reddy, D. S.; Chou, C. H.; Shu, C. F.; Lee, G. H. Polymer 2003, 44, 557.
35. Myung, B. Y.; Ahn, C. J.; Yoon, T. H. Polymer 2004, 45, 3185.
36. Eastmond G. C.; Gibas M.and Paprotny J., Eur. Polym. J. 1999, 35, 2097
37. Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A:
Polym. Chem. 2002, 40, 2810.
38. Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A:
Polym. Chem. 2002, 40, 3815.
39. Liou, G. S.; Hsiao, S. H. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 94.
40. Hsiao, S. H.; Chen, C. W.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2004, 42,
3302.
41. Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307.
42. Su. T. H.; Hsiao, S. H.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2005, 43,
2085.
43. Liou, G. S.; Hsiao, S. H.; Su, T. H. J. Mater. Chem. 2005, 15, 1812.
44. Liou, G. S.; Hsiao, S. H.; Su, T. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43,
3245.
45. Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Polymer 2005, 46, 5939.
46. Liou, G. S.; Hsiao, S. H.; Fang, Y. K. Eur. Polym. J. 2006, 42, 1533.
47. Liou, G. S.; Hsiao, S. H.; Chen, H. W. J. Mater. Chem. 2006, 16, 1831.
48. Liou, G. S.; Hsiao, S. H.; Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337.
49. Liou, G. S.; Yang, Y. L.; Su, Y. L. J. Polym. Sci. Part A: Polym. Chem. 2006, 44,
2587.
50. Liou, G. S.; Huang, N. K.; Yang, Y. L. J. Polym. Sci. Part A: Polym. Chem. 2006, 44,
4095.
51. Liou, G. S.; Chen, H. W.; Yen, H. Z. J. Polym. Sci. Part A: Polym. Chem. 2006, 44,
4108.
52. Hsiao, S. H.; Chang, Y. M.; Chen, H. W.; Liou, G..S. J. Polym. Sci. Part A: Polym.
Chem. 2006, 44, 4579.
53. Chang, C. W.; Liou, G..S; Hsiao, S. H. J. Mater. Chem. 2007, 17, 1007.
54. Van Order, R. B.; Lindwall, H. G. Chem. Rev. 1942, 30, 69-96.
55. Gribble, G.. W. J. Chem, Soc. Perkin Trans. 1 2000, 1045-1075.
56. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920.
57. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875-2911.
58. Heaney, H.; Ley, S. V. Org. Synth. 1974, 54, 58.
59. Zotti, G.; Zecchin, S.; Schiavon, G., Seraglia, R.; Berlin, A.; Canavesi, A. Chem.
Mater. 1994, 6, 1742-1748.
60. Xu, J.; Nie, G.; Zhang, S.; Han, X.; Hou, J.; Pu, S. J. Mater. Sci. 2005, 40, 2867.
61. Nie, G.; Han; X., Zhang, S.; Xu, J.; Cai, T. J. Appl. Polym. Sci. 2007, 104, 3129.
62. Yamazaki, N.; Matsumoto, M.; Higashi, F. J. Polym. Sci. Polym. Chem. Ed. 1975,
13, 1373.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 具有三苯胺結構的電致變色聚醯胺醯亞胺之合成與性質之研究
2. 具有2,3-二甲基吲哚基取代之三苯胺結構的新型芳香族聚醯胺及聚醯亞胺之合成與電致變色之研究
3. 具吡咯基取代之三苯胺基團的芳香族聚醯胺及聚醯亞胺之合成與光致發光及電致變色性質之研究
4. 具有3,6-雙(第三丁基)?剷??N的三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
5. 新型含三苯胺基團之共軛高分子材料:合成、理論計算、光電特性及電致變色性質研究
6. 新型具4-第三丁基三苯胺基團之芳香族聚醯胺及聚醯亞胺之合成與光致發光及電致變色性質之研究
7. 含N,N’-二(4-甲氧苯基)-N,N’-二苯基對苯二胺結構之新型聚醯胺醯亞胺的合成 及其光電性質的研究
8. 側鏈含3,6-雙(甲氧基)咔唑基團之芳香族聚醯胺及聚醯亞胺的合成及其光電性質的研究
9. 具芘基胺發色團之高性能聚合物的合成及其光電性質研究
10. 新型全芳香族側鏈含二苯胺基團聚脲之合成、熱性質、光物理性質、電化學性質及電致變色性質之研究
11. 具有對位單氟取代三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
12. 側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯胺之合成與光致發光及電致變色性質之研究
13. 電化學聚合苯胺共聚物與其電致變色元件
14. 新型具三苯胺側鏈基團之芳香族高分子之合成與電化學及電致變色性質之研究
15. 含三蝶烯結構之聚(醯胺-醯亞胺)及 聚(醯胺-三芳香胺)的合成與性質研究