跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建男
研究生(外文):Chien-Nan Chen
論文名稱:啤酒花抗氧化成分之研究
論文名稱(外文):Studies on the Antioxidative Constituents of Hops (Humulus lupulus)
指導教授:段國仁段國仁引用關係
指導教授(外文):Kow-Jen Duan
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:195
中文關鍵詞:螯合亞鐵離子清除DPPH自由基光電二極體陣列偵測器啤酒花抗氧化還原力超微弱化學發光
外文關鍵詞:Fe2+-chelating abilityDPPH radical-scavenging abilityPhytodiode arrayHopsReducing powerAntioxidantUltra-weak chemiluminescence
相關次數:
  • 被引用被引用:27
  • 點閱點閱:974
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
從植物中獲取天然抗氧化物已成為一種趨勢,也越來越多研究指出這些天然抗氧化物質,可以使生物體避免受自由基攻擊或是用以治療慢性病。本研究以體外(in vitro)試驗探討啤酒花(Hops)植物化學成分抗氧化活性。啤酒花化學成分經由75%乙醇萃取後,利用半製備型高液相層析法以甲醇-水-磷酸(900:190:3, v/v/v)系統分離純化,並以光電二極體陣列偵測器(photodiode Array;PDA)鑑定所得七種啤酒花化學成分分別為黃腐醇(xanthohumol,XN)、共葎草酮(cohumulone,coH)、葎草酮+加葎草酮(n-humulone+adhumulone,H)、共蛇麻酮(colupulone,coL)、蛇麻酮+加蛇麻酮(n-lupulone+adlupulone,L)和另外兩個混合物(Mix Fraction 1和Mix Fraction 2)。
體外抗氧化活性測試包括對α,α-diphenyl-β-picrylhydrazyl (DPPH)自由基的清除能力、螯合亞鐵離子能力和還原力;另外,以超微弱化學發光檢測清除超氧陰離子能力。結果發現,H 在清除DPPH自由基效果最好,IC50為0.36 mg/mL;而Mix Fraction 1則具有最高的清除率與人工抗氧化劑BHA和白藜蘆醇一樣高達91 %。在螯合亞鐵離子方面,以L和coL效果最佳,IC50分別為0.19 mg/mL和0.22 mg/mL;且L螯合亞鐵離子能力高達98 %。然而七種啤酒花化學成分在還原力方面的表現都不太好。近年來,超微弱化學發光法已被用於檢測活性氧自由基,我們以精氨酸超微弱化學發光系統檢測啤酒花化學成分清除超氧陰離子能力,結果發現coL具有很強清除超氧陰離子能力IC50 = 4.63 μg,分別比BHA和白藜蘆醇高30和96倍。實驗結果顯示啤酒花之化學成分大都具有抗氧化能力,抗氧化力隨劑量之增加而增加,然而其機制不盡相同。
此結果將有助於了解啤酒花之抗氧化成分,未來將更一步以細胞及動物模式探討啤酒花對生物氧化-抗氧化系統恆定之影響。
Recently, there was increasing interest in finding natural antioxidants from plants, which protect human body against free radical insult and ameliorate the progress of many chronic diseases. This study aimed at evaluating the in vitro antioxidative activity of Hops (Humulus lupulus) phytochemicals. The phytochemicals of Hops were extracted with 75% alcohol, separated by semi-preparative HPLC system with isocratic solvent methanol-water-phosphoric acid (900:190:3, v/v/v), and identified by HPLC photodiode array (HPLC-PDA). Seven constituents were isolated from alcoholic extraction of Hops that including: Mix Fraction 1, Mix Fraction 2, Xanthohumol (XN), n-humulone+adhumulone (H), cohumulone (coH), n-lupulone+adlupulone (L), and colupulone (coL).
The antioxidative activities, including α,α-diphenyl-β-picrylhydrazyl (DPPH) radical-scavenging ability, Fe2+-chelating ability, reducing power, and ultraweak chemiluminescence assay for assessing the superoxide (O2-.)-scavenging activity. The results showed that H had the greatest DPPH radical scavenging effect (IC50 = 0.36 mg/mL), but at the concentration of 2.0 mg/ml that Mix Fraction 1 could scavenge 91% DPPH radical similar to BHA and Resveratrol. In Fe2+-chelating ability that β-acids of Hops L and coL had the best activities with IC50 values of 0.19 and 0.22 mg/ml, and L could reach more than 98% of Fe2+-chelating power at the concentration of 0.625 mg/ml. However, the results showed that seven constituents of Hops have poor reducing power than BHA. In the present study, Ultra-weak chemiluminescence analytical technology was used to detect the generation of oxygen free radicals. And we used the lucigen-base ultra-weak chemiluminescence (LBCL) method to estimate the superoxide (O2-.)-scavenging activity. coL had a strong superoxide (O2-.)-scavenging activity (IC50 = 4.63 μg) about 30- and 96-fold more potent than BHA and Resveratrol.
Further research works were needed to investigate the inhibitory effect of Hops phytochemicals against oxidative damage in in vivo systems.
目錄

中文摘要I
英文摘要III
致謝V
目錄VI
圖目錄XIII
表目錄XVII
縮寫表XVIII
第一章 緒論1
1.1前言1
1.2動機3
1.3本文目的4
第二章 文獻回顧5
2.1自由基的定義5
2.2自由基的種類5
2.2.1活性氧屬(reactive oxygen species,ROS)7
2.2.1.1超氧化物自由基(superoxide anion radical,O2-.)7
2.2.1.2過氧化氫(hydrogen peroxide,H2O2)7
2.2.1.3羥基自由基(hydroxy radical,.OH)9
2.2.1.4單重態的氧(single oxygen,1O2)9
2.2.1.5過氧化脂質(lipid hydroperoxide,LOOH)11
2.2.2 活性氮屬(reactive nitrogen species,RNS)11
2.3自由基的來源14
2.3.1內生性來源14
2.3.1.1生物體正常細胞代謝途徑產生14
2.3.1.2吞噬細胞活化作用14
2.3.1.3黃嘌呤氧化酶(xanthine oxidase,XOD)16
2.3.1.4過渡金屬離子催化作用(transition metal catalysis)16
2.3.2外生性來源16
2.4自由基對生物體之氧化性傷害17
2.4.1自由基對脂肪酸氧化傷害20
2.4.2自由基對核酸氧化傷害20
2.4.3自由基對蛋白質氧化傷害23
2.5自由基與疾病之相關性28
2.6生物體內之抗氧化防禦系統30
2.6.1酵素系統30
2.6.1.1超氧歧化酶(superoxide dismutase,SOD)30
2.6.1.2麩胱甘肽過氧化酶(glutathione peroxidase,GSH-Px)31
2.6.1.3過氧化氫酶(catalase)31
2.6.2非酵素系統32
2.6.2.1生育醇(α-tocopherol)32
2.6.2.2維生素C (ascorbic acid)32
2.6.2.3麩胱甘肽(glutathione,GSH )33
2.6.2.4酚類化合物33
2.7抗氧化劑定義和作用機制37
2.7.1自由基終止劑(free radical terminators)37
2.7.2還原劑或氧清除劑37
2.7.3螯合劑型(chelating agents)38
2.8自由基之測定39
2.8.1電子自旋共振光譜(ESR,electron spin resonance)39
2.8.2化學呈色法39
2.8.3超微弱化學發光測定法39
2.9啤酒花簡介40
2.9.1啤酒花歷史演進40
2.9.2啤酒花的世界栽種分布41
2.9.3啤酒花的形態和分類42
2.9.4啤酒花主要化學成分45
2.9.4.1啤酒花樹脂(hops resins)47
2.9.4.2啤酒花多酚類化合物50
2.9.4.3啤酒花油(hops oil)57
2.9.5啤酒花之化學反應58
2.9.5.1 α-酸之化學反應58
2.9.5.2 β-酸之化學反應60
2.9.5.3啤酒花多酚類之化學反應63
2.9.6啤酒花傳統醫學功能66
2.9.7啤酒花現代醫學功能66
2.9.7.1啤酒花之抗氧化作用67
2.9.7.2啤酒花之抗發炎作用68
2.9.7.3啤酒花之雌激素活性和抗雌激素活性69
2.9.7.4啤酒花之調控致癌物的代謝70
2.9.7.5啤酒花之抗癌作用71
2.9.7.6啤酒花之抗新血管增生作用73
2.9.7.7啤酒花之抗菌作用73
2.9.7.8啤酒花之抗病毒作用74
第三章 材料與方法75
3.1實驗設計75
3.2實驗架構76
3.3實驗材料78
3.3.1材料78
3.3.2試藥78
3.3.3溶劑79
3.3.4儀器與設備80
3.4實驗方法81
3.4.1樣品製備81
3.4.1.1啤酒花小量乙醇萃取81
3.4.1.2啤酒花小量熱水萃取81
3.4.1.3啤酒花大量萃取81
3.4.1.4半製備型 HPLC分離純化82
3.4.2樣品分析83
3.4.2.1光電二極體陣列偵測器分析83
3.4.3抗氧化測定84
3.4.3.1清除DPPH自由基84
3.4.3.1.1原理84
3.4.3.1.2試藥配置84
3.4.3.1.3實驗流程85
3.4.3.2螯合亞鐵離子能力的測定87
3.4.3.2.1原理87
3.4.3.2.2試藥配置87
3.4.3.2.3實驗流程88
3.4.3.3還原力89
3.4.3.3.1原理89
3.4.3.3.2試藥配置89
3.4.3.3.3實驗流程90
3.4.3.4體外動力學模式評估抗氧化能力91
3.4.4超微弱化學發光(ultra-weak chemiluminescence)法92
3.4.4.1清除超氧陰離子92
3.4.4.1.1原理92
3.4.4.1.2試藥製備93
3.4.4.1.3實驗流程93
3.5統計分析98
第四章 結果與討論99
4.1啤酒花 PDA 分析99
4.1.1啤酒花熱水萃取與乙醇萃取之比較99
4.1.2啤酒花乙醇萃取分析結果99
4.1.3啤酒花化學成分製備與分析102
4.3啤酒花化學成分清除 DPPH 自由基能力119
4.4啤酒花化學成分螯合亞鐵離子之能力123
4.5啤酒花化學成分之還原力128
4.6清除超氧陰離子131
第五章 結論157
參考文獻159
附錄一 啤酒花HPLC圖譜(EBC method) 165
附錄二 Mix Fraction 1之PDA成分含量分析178
附錄三 Mix Fraction 2之PDA成分含量分析179
附錄四 XN之PDA成分含量分析180
附錄五 coH之PDA成分含量分析181
附錄六 H之PDA成分含量分析182
附錄七 coL之PDA成分含量分析184
附錄八 L之PDA成分含量分析189
附錄九 啤酒花化學成分對清除DPPH自由基之ANOVA統計分析190
附錄十 啤酒花化學成分對螯合亞鐵離子之ANOVA統計分析192
附錄十一 啤酒花化學成分還原力之ANOVA統計分析194

圖目錄

圖2.1 氧分子之氧化還原及激發態8
圖2.2 簡化的氧分子和其衍生物電子軌域圖10
圖2.3 NO之生合成路徑12
圖2.4 生物體內氧化和抗氧化平衡系統18
圖2.5 氧化壓力機制19
圖2.6 丙二醛形成途徑21
圖2.7 老化過程中生物體內氧化傷害指標的變化情形22
圖2.8 8-OH-dG經脂質過氧化物氧化形成的機制24
圖2.9 與8-oxgG相關突變路徑25
圖2.10 多胜肽鍵骨架的氧化斷裂27
圖2.11 白藜蘆醇之化學結構35
圖2.12 合成抗氧化劑BHA和金屬螯合劑EDTA化學結構38
圖2.13 雌株啤酒花之(A)毬果外觀(B)蛇麻腺體(C)蛇麻腺體放大圖(D)粒狀啤酒花43
圖2.14 啤酒花苦味酸化合物之化學結構(A)α酸;(B)β酸48
圖2.15 啤酒花開環查酮結構式之類黃酮化合物化學結構51
圖2.16 啤酒花黃烷酮結構式之類黃酮化合物化學結構52
圖2.17 啤酒花主要異戊烯基類黃酮化合物之化學結構54
圖2.18 Xanthohumol 於麥汁煮沸中之異構化反應55
圖2.19 啤酒花中主要啤酒花油之化學結構57
圖2.20 α-酸之葎草酮由熱反應異構轉化成異葎草酮59
圖2.21 α-酸(葎草酮)之氧化反應61
圖2.22 β-酸(蛇麻酮)之氧化反應62
圖2.23多酚類之聚合反應65
圖3.1 實驗架構76
圖3.2 啤酒花抗氧化成分之分離純化流程圖77
圖3.3 抗氧化劑RH與DPPH自由基反應之機制86
圖3.4 精氨酸與丙酮醛產生超氧陰離子之反應過程95
圖3.5 亮光素與超氧陰離子反應流程圖96
圖3.6 超氧陰離子之(A)超微弱冷光圖譜;(B)濃度與抑制百分比曲線圖97
圖4.1啤酒花(a)水萃與(b)乙醇萃取之光電二極體陣列偵測器三維圖譜100
圖4.2 啤酒花乙醇粗萃物PDA圖譜分析103
圖4.3 啤酒花乙醇粗萃物 HPLC 圖譜分析 (a) 吸收波長370 nm (b) 吸收波長314 nm 104
圖4.4 啤酒花化學成分Mix Fraction 1之PDA圖譜分析107
圖4.5 啤酒花化學成分Mix Fraction 2之PDA圖譜分析109
圖4.6 啤酒花化學成分XN之PDA圖譜分析110
圖4.7 啤酒花化學成分coH之PDA圖譜分析111
圖4.8 啤酒花化學成分H之PDA圖譜分析113
圖4.9 啤酒花化學成分coL之PDA圖譜分析114
圖4.10 啤酒花化學成分L之PDA圖譜分析115
圖4.11 啤酒花化學成分清除DPPH自由基能力之比較112
圖4.12 啤酒花化學成分螯合亞鐵離子能力之比較124
圖4.13 人工抗氧化劑BHA之還原力119
圖4.14 啤酒花化學成分還原力之比較120
圖4.15 啤酒花Mix Fraction 1清除超氧陰離子之超微弱化學發光圖132
圖4.16 啤酒花Mix Fraction 2清除超氧陰離子之超微弱化學發光圖133
圖4.17 啤酒花XN清除超氧陰離子之超微弱化學發光圖譜134
圖4.18 啤酒花coH清除超氧陰離子之超微弱化學發光圖譜135
圖4.19 啤酒花H清除超氧陰離子之超微弱化學發光圖譜136
圖4.20 啤酒花coL清除超氧陰離子之超微弱化學發光圖譜137
圖4.21 啤酒花L清除超氧陰離子之超微弱化學發光圖譜138
圖4.22 合成抗氧化劑BHA清除超氧陰離子之超微弱化學發光圖譜140
圖4.23 白藜蘆醇清除超氧陰離子之超微弱化學發光圖譜141
圖4.24 啤酒花Mix Fraction 1之濃度與抑制百分比關係圖143
圖4.25 啤酒花Mix Fraction 2之濃度與抑制百分比關係圖144
圖4.26 啤酒花XN之濃度與抑制百分比關係圖145
圖4.27 啤酒花之coH濃度與抑制百分比關係圖146
圖4.28 啤酒花H之濃度與抑制百分比關係圖147
圖4.29 啤酒花coL之濃度與抑制百分比關係圖148
圖4.30 啤酒花L之濃度與抑制百分比關係圖149
圖4.31 合成抗氧化劑BHA之濃度與抑制百分比關係圖150
圖4.32 白藜蘆醇之濃度與抑制百分比關係圖151
圖4.33 超氧化物歧化酶清除超氧陰離子之超微弱化學發光圖譜152
圖4.34 超氧化物歧化酶之濃度與抑制百分比關係圖153

表目錄

表2.1 活性種類6
表2.2 自由基來源15
表2.3 與自由基相關的臨床疾病29
表2.4 類黃酮的抗氧化性和紫外光吸收波長36
表2.5 苦味型和芳香型啤酒花之差異44
表2.6 啤酒花毬果的化學成分46
表2.7 啤酒花和啤酒中主要異戊烯基類黃酮含量64
表4.1 比較啤酒花熱水萃取與乙醇萃取101
表4.2 啤酒花乙醇粗萃物主要化學成分之滯留時間、最適吸收波長和其所佔比例105
表4.3 經半製備型HPLC純化後之啤酒花各化學成分PDA分析結果117
表4.4 啤酒花化學成分清除DPPH自由基之半抑制濃度(IC50)和其反應速率常數(K) 122
表4.5 啤酒花化學成分螯合亞鐵離子之半抑制濃度(IC50)和其反應速率常數(K) 127
表4.6 比較啤酒花化學成分清除超氧陰離子能力154
表4.7 七種啤酒花化學成分之抗氧化力分析表143
方湜惠. 2002. 超臨界CO2萃取移除廢水中重金屬之高級淨水技術. 逢甲大學環境工程與科學研究所碩士論文.
姜淑繡. 2000. 省產蘿蔔之抗氧化性研究. 大葉大學食品工程研究所碩士論文.
洪千雅. 2000. 仙草抗氧化機能性之研究. 國立中興大學食品科學系博士論文.
胡文姝. 2002. 啤酒與啤酒花化學. 國立中正大學化學研究所碩士論文.
陳惠英、顏國欽。1998。自由基、抗氧化防禦與人體健康。中華民國營養學會雜誌。 23:105-121。
陳慈芬. 2005. 十二種中草藥抗氧化能力分析. 大同大學生物工程研究所碩士論文.
黃進發. 2000. 天然抗氧化物-麩胱苷肽之生理機能. 食品工業. 32(4), 39-46.
簡錦慈. 2004. 刺蔥之抗氧化性及安全性探討. 靜宜大學食品營養學系碩士論文.
Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y., 2004. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Review. Anticancer Res. (5A), 2783-2840.
Ames B.N., Shigenaga M.K., Gold L.S., 1993. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect., 101(5), 35-44.
Analytica-EBC, Section 7. Hops, Method 7.7: α- and β-acids in hops and hop products by HPLC, Fachverlag Hans Carl, N¨urnberg, 1998.
Anthony W.S., Arie A., 1993. The biochemical basis of the NADPH oxidase of phagocytes. TIBS. 18:43-47.
Assimopoulou A.N., Papageorgiou V.P., 2005. Radical scavenging activity of Alkanna tinctoria root extracts and their main constituents, hydroxynaphthoquinones. Phytother. Res., 19, 141–147.
Bagchi K., Puri S., 1998. Free radicals and antioxidants in health and disease. East. Medit. Health J. 4(2), 350-360.
Behre K.E., 1999. The history of beer additives in Europe – a review. Vegetation History and Archaeobotany. 8, 35–48.
Bertl E., 2005. Inhibition of angiogenesis by potential cancer chemopreventive agents – Establishment of a human in vitro antiangiogenesis assay and mechanistic evaluation of potent inhibitors. Ph.D. Thesis University of Heidelberg.
Bertl E., Becker H., Eicher T., Herhaus C., Kapadia G., Bartsch H., Gerhäuser C., 2004. Inhibition of endothelial cell functions by novel potential anti-angiogenic agents. Biochem. Biophys. Res. Commun., 325, 287–295.
Blokhina O., Virolainen E., Fagerstedt K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. (Lond). 91, 179-194.
Bose K.S., Agrawal B.K., 2007. Effect of lycopene from cooked tomatoes on serum antioxidant enzymes, lipid peroxidation rate and lipid profile in coronary heart disease. Singapore. Med. J., 48(5), 415-420.
Boyer R.F., McCleary C.J., 1987. Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. Free Radic. Biol. Med., 3(6), 389-395.
Buckwold V.E., Wilson R.J., Nalca A., Beer B.B., Voss T.G., Turpin J.A., Buckheit R.W., Wei J., Wenzel-Mathers M., Walton E.M., Smith R.J., Pallansch M., Ward P., Wells J., Chuvala L., Sloane S., Paulman R., Russell J., Hartman T., Ptak R., 2004. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res., 61, 57–62.
Chadwick L.R., Pauli G.F., Farnsworth N.R., 2006. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine., 13(1-2), 119–131.
Chen W.J., Lin J.K., 2004. Mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by Fas and caspase cascades. J. Agric. Food Chem., 52(1), 55-64.
Cook N.C., Samman S., 1996. Flavonoids- chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem., 7(3), 66-76.
Cos P., Bruyne T.D., Apers S., Berghe D.V., Pieters L., Vlietinck A.J., 2003. Phytoestrogens: recent developments. Planta. Med., 69, 589–599.
Cybulsky M.I., Gimbrone M.A., 1991. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. 251(4995), 788-91.
Dawson T.M., Snyder S.H., 1994. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J. Neurosci., 14, 5147-5159.
Diplock A.T., Charleux J.L., Crozier-Willi G., Kok F.J., Rice-Evans C., Roberfroid M., Stahl W., Vina-Ribes J., 1998. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1, 77-112.
Dizdaroglu M., Burgess S.M., Jaruga P., Hazra T.K., Rodriguez H., Lloyd R.S., 2001. Substrate specificity and excision kinetics of Escherichia coli endonuclease VIII (Nei) for modified bases in DNA damaged by free radicals. Biochem. 40(40), 12150-12156.
Droge W., 2002. Free radicals in the physiological control of cell function. Physiol. Rev., 82, 47-95.
Fogler H.S., 1992. Elements of chemical reaction engineering. Second Edition, PTR P.H., 823-825.
Foote C.S., Valentine J.S., Greenberg A., Liebman J.F., 1985. Active oxygen in chemistry. Chapman and Hall, New York.
Foster S., 1996. Herbs for your health. Loveland, CO: Interweave Press., 56–57.
Frankel E.N., 1996. Antioxidants in lipid foods and their impact on food quality. Food Chem., 57(1), 51-55.
Garcia-Campana A.M., Baeyens W.R.G., Cuadros-Rodriguez L., Barrero F.A., Bosque-Sendra J.M., Gamiz-Gracia L., 2002. Potential of chemiluminescence and bioluminescence in organic analysis. Cur. Org. Chem. 6, 1-20.
Gerhauser C. 2005(a). Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res., 49(9), 827-831.
Gerhauser C., 2005(b). Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer. 41, 1941–1954.
Gerhauser C., Alt A., Heiss E., Gamal-Eldeen A., Klimo K., Knauft J., Neumann I., Scherf H.R., Frank N., Bartsch H., Becker H., 2002. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 1, 959-969.
Gerhauser C., Alt A.P., Klimo K., Knauft J., Frank N., Becker H., 2002. Isolation and potential cancer chemopreventive activities of phenolic compounds of beer. Phytochem. Rev., 1, 369–377.
Gerrity T.R., Garrard C.S., Yeates D.B., 1981. Theoretic analysis of sites of aerosol deposition in the human lung. Chest., 80(6 Suppl), 898-901.
Getränke-Fachverlag H.C., 1997. Hops and Hop Products. EBC., 98-107.
Giese B., 1996. Antioxidants: tool for preventing lipid oxidation. Food Technol. 50, 73-81.
Gooddwin T.W., 1965. Chemistry and biochemistry of plant pigments. Academic press.
Guerciolini R., Szumlanski C., Weinshiboum R.M., 1991. Human liver xanthine oxidase: nature and extent of individual variation. Clin. Pharmzcol. Ther., 50, 663-672
Gutteridge J.M.C., Halliwell B., 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci., 15, 129-135.
Hak A.E., Stampfer M.J., Campos H., Sesso H.D., Gaziano J.M., Willett W., Ma J., 2003. Plasma carotenoids and tocopherols and risk of myocardial infarction in a low-risk population of US male physicians. Circulation. 108, 802 - 807.
Halliwell B., 1994. Free radicals and antioxidants: A personal view. Nutr Rev., 52(2), 253-265.
Halliwell B., 2006(a). Oxidative stress and neurodegeneration: where are we now?. J. Neurochem., 97(6), 1634-1658.
Halliwell B., 2006(b). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141, 312-322.
Halliwell B., Gutteridge J.M.C., 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol., 186, 1-85.
Halliwell B., Rafter J., Jenner A., 2005. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?. Am. J. Clin. Nutr., 81(1), 268S-276S.
Harman D., 1981. The aging process. Proc. Natl. Acad. Sci. USA. 78(11), 7124-7128.
Hartwig A., Schlepegrell R., 1995. Induction of oxidative DNA damage by ferric iron in mammalian cells. Carcinogenesis. 16(12), 3009-3013.
Heyerick A., Zhao Y., Sandra P., Huvaere K., Roelens F., Keukeleire D.D., 2003. Photolysis of hop-derived trans-iso-α-acids and trans-tetrahydroiso-α-acids: product identification in relation to the lightstruck flavour of beer. Photochem. Photobiol. Sci., 2, 306-314.
Honma Y., Tobe H., Makishima M., Yokoyama A., Okabe-Kado J., 1998. Induction of differentiation of myelogenous leukaemia cells by humulone, a bitter in the hop. Leuk. Res., 22, 605–610.
Hung L.M., Su M.J., Chu W.K., Chiao C.W., Chan W.F., Chen J.K., 2002. The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. Br. J. Pharmacol., 135(7):1627-33.
Hyslop P.A., Hinshaw D.B., Halsey W.A., Schraufstätter I.U., Sauerheber R.D., Spragg R.G., Jackson J.H., Cochrane C.G., 1988. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem., 263(4), 1665-1675.
Kazzaz J.A., Thomas J.K., Mantell F.A.N., Horowitz S., 1996. Cellular oxygen toxicity. J. Biol. Chem., 271, 15782-15786.
Kehrer J.P., 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol., 23(1), 21-48.
Keukeleire D.D., 2000. Fundamentals of beer and hop chemistry. Qumica Nova., 23, 108–112.
Keukeleire J.D., Janssens I., Heyerick A., Ghekiere G., Cambie J., Roldan-Ruiz I., Bockstaele E.V., Keukeleire D.D., 2007. Relevance of organic farming and effect of climatological conditions on the formation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). J. Agric. Food Chem., 55(1), 61-66.
Kitts D., 1997. An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci Technol. 8(6), 198-203.
Koshland D.E. Jr., 1992. The molecule of the year. Science. 258, 1861.
Kregel K.C., Zhang H.J., 2007. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292(1), R18-36.
Krofta L., Poustka J., Hajslová J., Bioactive substances in hops and beer. Hop Research Institute, Žatec, Czech Republic.
Kubow S., 1993. Lipid oxidation products in food and atherogenesis. Nutr. Rev., 51(2), 33-40.
Lai L.S., Chou S.T., Chao W.W., 2001. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agric. Food Chem., 49 (2), 963-968.
Lamy V., Roussi S., Chaabi M., Gosse F., Schall N., Lobstein A., Raul F., 2007. Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis., 28(7), 1575-1581.
Lander H.M., 1997. An essential role of free radicals and derived species in signal transduction. FASEB J., 11, 118-124.
Langseth L., 1995. Oxidants, antioxidants and disease prevention. ILSI Europe, Brussels, Belgium., 1-24.
Leonard S.S., Xia C., Jiang B.H., Stinefelt B., Klandorf H., Harris G.K., Shi X., 2003. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun., 309(4), 1017-1026.
Liegeois C., Lermusieau G., Collin S., 2000. Measuring antioxidant efficiency of wort, malt, and hops against the 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J. Agric. Food Chem. 48(4), 1129-1134.
Lim P., Wuenschell G.E., Holland V., Lee D.H., Pfeifer G.P., Rodriguez H., Termini J., 2004. Biochem. 43(49), 15339-15348.
Meyer A.S., Isaksen A., 1995. Application of enzymes as food antioxidants. Trends in Food Sci & Tech., 6, 300-304.
Michael M., 2000. Hops: A millennium review. J. Am. Soc. Brew. Chem. 58(4), 131-146.
Milligan S.R., Kalita J.C., Pocock V., Kauter V.V.D., Stevens J.F., Deinzer M.L., Rong H., Keukeleire D.D., 2000. The endocrine activities of 8-prenylnaringenin and related Hop (Humulus lupulus L.) flavonoids. JCE & M., 85(12), 4912-4915.
Miranda C.L., Stevens J.F., Helmrich A., Henderson M.C., Rodriguez R.J., Yang Y.H., Deinzer M.L., Barnes D.W., Buhler D.R., 1999. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 37, 271–285.
Miranda C.L., Stevens J.F., Ivanov V., McCall M., Frei B., Deinzer M.L., Buhler D.R., 2000. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem., 48, 3876–3884.
Mizobuchi S., Sato Y., 1984. A new flavanone with antifungal activity isolated from hops. Agric. Biol. Chem. 48, 2771-2775.
Moncada S., Palmer R.M.J., Higgs E.A., 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 43, 109–141.
Nathan C.F., Hibbs J.B., 1991. Role of nitric oxide synthsis in macrophage antimicrobial activity. Curr. Opin. Immunol., 3, 65-70.
Nickerson G., Williams P., Haunold A., 1988. Composition of male hop oil. J. Am. Soc. Brew. Chem., 46, 14-17.
Niedernhofer L.J., Daniels J.S., Rouzer C.A., Greene R.E., Marnett L.J., 2003. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem., 278(33), 31426-31433.
Oyaizu M., 1986. Studies on products of products of browning reaction: antioxidative activities of products of products of browning reaction prepared from glucosamine. Jpn, J. Nutr., 44, 307.
Packer R.J., 1996. Brain tumors in children. Curr. Opin. Pediatr., 8(6), 549-557.
Park O.J., Surh Y.J., 2004. Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett., 150(1), 43-56.
Pepper M.S., Hazel S.J., Hümpel M., Schleuning W.D., 2004. 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol., 199, 98–107.
Perpète P., Mélotte L., Dupire S., Collin S., 1998. Varietal discrimination of hop pellets by essential oil analysis I. comparison of fresh samples. J. Am. Soc. Brew. Chem., 56(3), 104-108.
Pryor W.A., Houk K.N., Foote C.S., Fukuto J.M., Ignarro L.J. Squadrito G.L. Davies K.J.A. 2006. Free radical biology and medicine: it’s a gas, man! Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R491–R511.
Przedborski S., Jackson-Lewis V., Yokoyama R., Shibata T., Dawson V.L., Dawson T.M., 1996. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA., 93(10), 4565-4571.
Reid S.E., Murthy M.S., Kaufman M., Scanlon E.F., 1996. Endocrine and paracrine hormones in the promotion, progression and recurrence of breast cancer. Br J Surg., 83, 1037–1046.
Retsky K.L., Frei B., 1995. Vitamin C prevents metal ion-dependent initiation and propagation of lipid peroxidation in human low-density lipoprotein. Biochim. Biophys. Acta., 1257(3), 279-287.
Rikans L.E., Hornbrook K.R., 1997. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta., 1362(2-3), 116-127.
Roberfroid M, Calderon P.B., 1997. Antioxidants and radical scavengers: some therapeutical use. Free radicals and oxidation phenomena in biological systems. New York: Marcel Dekker., 193-236.
Rocio G.V., Sonia C.R., Antonio S.C., Martin-Lagos C.J.A., Alberto F.G., 2006. Analysis of hop acids and their oxidized derivatives and iso-α-acids in beer by capillary electrophoresis-electrospray ionization mass spectrometry. J. Agric. Food Chem., 54 (15), 5400 -5409.
Rodriguez R.J., Miranda C.L., Stevens J.F., Deinzer M.L., Buhler D.R., 2001. Influence of prenylated and non-prenylated flavonoids on liver microsomal lipid peroxidation and oxidative injury in rat hepatocytes. Food Chem. Toxicol., 39(5), 437-445.
Schmalreck A.F., Teuber M., 1975. Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Can. J. Microbiol., 21, 205–212.
Sekiguchi M., Tsuzuki T., 2002. Oxidative nucleotide damage: consequences and prevention. Oncogene., 21(58), 8895-8904.
Shimamura M., Hazato T., Ashino H., Yamamoto Y., Iwasaki E., Tobe H., Yamamoto K., Yamamoto S., 2001. Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun., 289, 220–224.
Stadtman E.R., 2006. Protein oxidation and aging. Free Radic Res., 40(12), 1250-1258.
Stevens J.F., Ivancic M., Hsu V.L., Deinzer M.L., 1997. Prenylflavonoids from Humulus lupulus. Phytochem., 44(8), 1575-1585.
Stevens J.F., Miranda C.L., Buhler D.R., Deinzer M.L., 1998. Chemistry and biology of hop flavonoids. J. Am. Soc. Brew. Chem. 56, 136–145.
Stevens J.F., Page J.E., 2004. Xanthohumol and related prenylflavonoids from hops and beer: to your good health!. Phytochem. 65, 1317–1330.
Stevens J.F., Taylor A.W., Clawson J.E., Deinzer M.L., 1999(b). Fate of xanthohumol and related prenylflavonoids from hops to beer. J. Agric. Food Chem., 47(6), 2421-2428.
Stevens J.F., Taylor A.W., Deinzer M.L., 1999(a). Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A., 832, 97 –107.
Sugihara N., Arakawa T., Ohnishi M., Furuno K., 1999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic. Biol., 1313-1323.
Tagashira M., Watanabe M., Uemitsu N., 1995. Antioxidative activity of hop bitter acids and their analogues. Biosci. Biotechnol. Biochem., 59(4), 740-742.
Taylor A.W., Barofsky E., Kennedy J.A., Deinzer M.L., 2003. Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric. Food Chem. 51, 4101–4110.
Tobe H., Muraki Y., Kitamura K., Komiyama O., Sato Y., Sugioka T., Maruyama H.B., Matsuda E., Nagai M., 1997. Bone resorption inhibitors from hop extract. Biosci Biotechnol Biochem., 61, 158–159.
Tsai C.H., Chang R.C., Chiou J.F., Liu T.Z., 2003. Improved superoxide-generating system suitable for the assessment of the superoxide-scavenging ability of aqueous extracts of food constituents using ultraweak chemiluminescence. J. Agric. Food Chem., 51(1), 58 -62.
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39(1), 44-84.
Voss P., Siems W., 2006. Clinical oxidation parameters of aging. Free Radic Res., 40(12), 1339–1349.
Wang Q., Ding Z.H., Liu J.K., Zheng Y.T., 2004. Xanthohumol, a novel anti- HIV-1 agent purified from hops Humulus lupulus. Antiviral Res., 64, 189–194.
Weiss R.F., 1988. Herbal Medicine. Gothenburg, Sweden: Ab Arcanum., 285–286.
Yamaguchi T., Takamura H., Matoba T., Terao J., 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem., 62(6), 1201-1204.
Yamamoto K., Wang J., Yamamoto S., Tobe H., 2000. Suppression of cyclooxygenase-2 gene transcription by humulon of beer hop extract studied with reference to glucocorticoid. FEBS Lett., 465(2-3), 103-106.
Yasukawa K., Takeuchi M., Takido M., 1995. Humulon a bitter in the hop, inhibits tumour promotion by 12-O-tetradecanoylphorbol- 13-acetate in two-stage carcinogenesis in mouse skin. Oncology., 52, 156–158.
Zhao F., Nozawa H., Daikonnya A., Kondo K., Kitanaka S., 2003. Inhibitors of nitric oxide production from hops (Humulus lupulus L.). Biol. Pharm. Bull., 26, 61–65.
Zhao F., Watanabe Y., Nozawa H., Daikonnya A., Kondo K., Kitanaka S., 2005. Prenylflavonoids and phloroglucinol derivatives from hops (Humulus lupulus). J. Nat. Prod., 68, 43–49.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top