跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王茂進
研究生(外文):Mao-Jin Wang
論文名稱:利用射頻磁控濺鍍法在具有鑽石薄膜之矽晶片上沉積氧化鋅薄膜及表面聲波之應用
論文名稱(外文):Deposition of Highly C-axis Oriented ZnO Thin Films on Diamond/Si Substrates by RF Magnetron Sputter for Surface Acoustic Wave Application
指導教授:施文欽
指導教授(外文):Wen-Ching Shih
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:氧化鋅奈米鑽石微米鑽石表面聲波濺鍍
外文關鍵詞:zinc oxidenanocrystalline diamondmicrocrystalline diamondsurface acoustic wavesputtering
相關次數:
  • 被引用被引用:8
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
近年來氧化鋅廣泛地被應用在表面聲波元件,它已經成功地被成長在quartz、Si、GaAs、sapphire基板上,其中成長sapphire基板更被廣泛的應用在高頻表面聲波元件,其主要原因為sapphire基板具有高聲速的之優點,然而由於sapphire基板價格較 Si 基板昂貴且不利於大面積化,在本研究中,我們成長ZnO在Diamond/Si上以達高頻表面聲波元件應用。
以鑽石相關材料為基底之表面聲波元件,在其元件之工作頻率已被證實其優越之特性。在本研究中,我們將探討不同型態之鑽石基板對元件波傳遞特性之影響。我們利用射頻磁控濺鍍法分別沉積ZnO薄膜於奈米鑽石(NCD)/Si與微米鑽石(MCD)/Si基板上,並製作成表面聲波元件。實驗結果顯示,其ZnO薄膜C軸優選方向之半高寬分別為0.21˚與0.23˚,薄膜表面平坦度分別為18.5 nm與9.3 nm,並利用網路分析儀量測元件之頻率響應,其IDT/ZnO/NCD/Si之第0模態之波速為5296 m/s(331 MHz),ZnO/IDT/NCD/Si之第1模態之波速為8960 m/s(448 MHz)。實驗所得結果與前人所作之理論分析結果相近。
Among recently developed piezoelectric thin film materials, ZnO has been considered to be very promising for fabricating thin film surface acoustic wave (SAW) devices. ZnO thin films have been deposited on quartz, Si, GaAs and sapphire substrates. In these substrates materials, sapphire is widely used for high frequency SAW device due to its high acoustic velocity. However, the sapphire substrate is more expensive than Si wafer, and it is still very difficult to grow large size of Al2O3 single crystal. In this study, we adopt the ZnO thin film on Diamond/Si substrate as a promising substrate for high-frequency SAW device.
Surface acoustic wave device built on diamond related substrates have been proven their superiority in working frequency. To evaluate the effects of diamond substrates for wave propagation, different thicknesses and types of diamond films, such as nanocrystalline diamond(NCD)and microcrystalline diamond(MCD), are adopted in this study for comparison. The c-axis orientated ZnO films are sputtered on the NCD films and polished MCD films as the piezoelectric films. The experimental results show that the highly c-axis oriented ZnO films could be obtained. The full width at half maximum intensity(FWHM)of ZnO(002)films on NCD and MCD films obtained from the X-ray diffraction (XRD)were 0.21 ° and 0.23 °, respectively. The surface roughness of the ZnO films on NCD and MCD films was about 18.5 nm and 9.3 nm, respectively. It was found that the oth mode in the IDT/ZnO/NCD/Si structure has the velocity of 5296 m/s(331 MHz), and the 1st mode in the ZnO/IDT/NCD/Si structure has the velocity of 8960 m/s(448 MHz). The experimental results are in agreement with those published in the literatures.
致謝 i
英文摘要 ii
中文摘要 iv
目錄 v
表目錄 viii
圖目錄 ix

第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2

第二章 基本理論 4
2.1 材料基本介紹 4
2.1.1 鑽石(Diamond)4
2.1.2 氧化鋅(ZnO)7
2.2 壓電特性與表面聲波元件之基本原理 9
2.2.1 正壓電效應 9
2.2.2 逆壓電效應 10
2.2.3 表面聲波元件基本原理 11
2.3 薄膜製作技術 15
2.3.1 射頻磁控濺鍍法 15

第三章 實驗製程與量測 22
3.1 基板準備 22
3.1.1 SiO2/Si 22
3.1.2 NCD/Si、MCD/Si 23
3.2 製備SiO2緩衝層 24
3.3 製備ZnO薄膜 25
3.4 薄膜物性量測 26
3.4.1 α-step 26
3.4.2 X-ray繞射儀 27
3.4.3 原子力顯微鏡 29
3.4.4 掃描式電子顯微鏡 30
3.4.5 拉曼光譜 31
3.5 表面聲波元件製作 31
3.5.1 IDT/ZnO/Substrate 32
3.5.2 ZnO/IDT/Substrate 34
3.5.3 表面聲波特性量測 36

第四章 結果與討論 38
4.1 NCD與MCD物性量測 38
4.2 SiO2緩衝層分析 46
4.3 ZnO/NCD/Si薄膜物性分析 48
4.4 ZnO/MCD/Si薄膜物性分析 51
4.4.1 沉積參數對薄膜結構之影響 51
4.5 ZnO/SiO2/MCD/Si薄膜物性分析 57
4.6 表面聲波元件特性量測 60
4.6.1 光罩設計 60
4.6.2 IDT/ZnO/NCD/Si 61
4.6.3 ZnO/IDT/NCD/Si 64
4.6.4 IDT/ZnO/MCD/Si、IDT/ZnO/SiO2/MCD/Si、ZnO/IDT/MCD/Si 67

第五章 結論 71
5.1 結論 71

參考文獻 73

表目錄
表1.1 Material characteristics of fabricated SAW devices 3
表2.1 鑽石基本特性 6
表2.2 氧化鋅基本特性 8
表2.3 壓電材料種類 9
表3.1 Silicon(100)基板規格 23
表3.2 SiO2薄膜沉積參數 25
表3.3 ZnO薄膜沉積參數 26
表3.4 表面聲波電極及圖案製作材料與設備 32
表4.1 ZnO薄膜製程參數 51
表4.2 表面聲波元件設計參數 60

圖目錄
圖2.1 鑽石晶體結構 5
圖2.2 ZnO 晶體結構 8
圖2.3 正壓電效應 10
圖2.4 逆壓電效應 11
圖2.5 表面聲波元件基本結構 12
圖2.6 典型表面聲波帶通濾波器之頻譜響應 15
圖2.7 RF濺鍍系統直流自我偏壓 20
圖2.8 RF阻抗匹配系統 21
圖3.1 射頻磁控濺鍍系統 24
圖3.2 α-step示意圖 27
圖3.3 X-ray diffraction示意圖 28
圖3.4 晶格繞射示意圖 28
圖3.5 原子力顯微鏡原理示意圖 29
圖3.6 掃描式電子顯微鏡基本構造圖 30
圖3.7 表面聲波元件上電極圖案製作流程 34
圖3.8 表面聲波元件下電極圖案製作流程 36
圖3.9 表面聲波濾波器特性量測系統架構圖 37
圖4.1 Illustration of ASTeX microwave CVD reactor 38
圖4.2 中國砂輪公司鑽石薄膜沉積專利技術 39
圖4.3 Nanocrystalline diamond(NCD)之拉曼量測圖 41
圖4.4 Microcrystalline diamond(MCD)之拉曼量測圖 41
圖4.5 不同厚度Nanocrystalline diamond(NCD)之SEM量測圖
(a)2.1 μm(b)3.6 μm(c)4.3 μm(d)5 μm 43
圖4.6 Microcrystalline diamond(MCD)之SEM量測圖 43
圖4.7 不同厚度Nanocrystalline diamond(NCD)之AFM量測圖
(a)2.1 μm(b)3.6 μm(c)4.3 μm(d)5 μm 45
圖4.8 Microcrystalline diamond(MCD)之AFM量測圖 46
圖4.9 ZnO/SiO2/MCD/Si之SEM量測圖 47
圖4.10 SiO2/MCD/Si之AFM量測圖 47
圖4.11 ZnO/NCD/Si之SEM量測圖 48
圖4.12 ZnO/NCD/Si之EDAX量測圖 49
圖4.13 ZnO/NCD/Si之XRD量測圖 50
圖4.14 ZnO/NCD/Si之AFM量測圖 50
圖4.15 ZnO薄膜沉積於MCD/Si基板之不同製程溫度XRD圖 52
圖4.16 ZnO薄膜沉積於MCD/Si基板之不同RF功率XRD圖 53
圖4.17 ZnO薄膜沉積於MCD/Si基板之不同Ar/O2流量XRD 54
圖4.18 ZnO薄膜沉積於MCD/Si基板之SEM圖 55
圖4.19 ZnO薄膜沉積於MCD/Si基板之AFM圖 55
圖4.20 ZnO薄膜沉積於MCD/Si基板之EDAX量測圖 56
圖4.21 ZnO/SiO2/MCD/Si之XRD量測圖 58
圖4.22 ZnO/SiO2/MCD/Si之AFM量測圖 58
圖4.23 ZnO/SiO2/MCD/Si之SEM量測圖 59
圖4.24 ZnO/SiO2/MCD/Si之EDAX量測圖 59
圖4.25 光罩示意圖 60
圖4.26 IDT線寬4μm之OM與頻率響應圖(IDT/ZnO/NCD/Si)62
圖4.27 IDT線寬4μm之OM與頻率響應圖(IDT/ZnO/SiO2/Si)62
圖4.28 IDT線寬5μm不同NCD緩衝層厚度之曲線圖(IDT/ZnO/NCD/Si)63
圖4.29 單晶鑽石表面聲波濾波器理論分析與奈米鑽石多晶鑽石表面聲波濾波器
實驗結果(IDT/ZnO/NCD/Si)63
圖4.30 IDT線寬5μm之OM與頻率響應圖(ZnO/IDT/NCD/Si)65
圖4.31 IDT線寬5μm不同NCD緩衝層厚度之曲線圖(IDT/ZnO/NCD/Si)65
圖4.32 單晶鑽石表面聲波濾波器理論分析與奈米鑽石多晶鑽石表面聲波濾波器
實驗結果(ZnO/IDT/NCD/Si)66
圖4.33 IDT/ZnO/NCD/Si(左)、ZnO/IDT/NCD/Si(右)之頻率響應圖
(IDT線寬5 μm、NCD厚度4.3 μm、ZnO厚度1.2 μm)66
圖4.34 機電耦合係數對kHZnO理論分析曲線圖IDT/ZnO/NCD/Si(左)
、ZnO/IDT/NCD/Si(右)67
圖4.35 IDT線寬5μm之OM與頻率響應圖(IDT/ZnO/MCD/Si)68
圖4.36 IDT線寬5μm之OM與頻率響應圖(IDT/ZnO/SiO2/MCD/Si)68
圖4.37 IDT線寬5μm之OM與頻率響應圖(ZnO/IDT/MCD/Si)69
圖4.38 波速對kHZnO理論分析曲線圖 69
圖4.39 機電耦合係數對kHZnO理論分析曲線圖ZnO/IDT/MCD/Si(左)
、IDT/ZnO/MCD/Si(右)70
參考文獻
[1]Lord Rayleigh. “On wave propagating along the plane surface of an elastic solid.” Proceedings London Mathematical Society. vol. 7, pp. 4-11(1885)
[2]R. M. White. “Surface elastic wave.” Proceedings of the IEEE. vol. 58, pp. 1238-1276(1970)
[3]H. Nakahata, K. Higahi, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki and S. Shikata, “SAW Device on Diamond” IEEE Ultrasonics Symposium, pp. 361-370(1995)
[4]H. O. Pierson, “Handbook of Carbon, Graphite, Diamond and Fullerenes - Properties, Processing and Applications” William Andrew Publishing/Noyes(1993)
[5]L. Schafer, M. Scattler, and C. P. Klages, “Application of Diamond Films and Related Materials” Elsevier Science Publishers, pp. 453-460(1991)
[6]Kurt Nassau, “Diamond Films and Coatings” edit by Robert F. Davis, William Andrew Publishing/Noyes, pp. 51-55(1993)
[7]Clausing, Robert E, “Diamond & Diamond Like Films & Coatings” , PLENUM PRESS(1992)
[8]H. Nakahata, A. Hachigo, S. Shikata and N. Fujimori, “High frequency surface acoustic wave filter using ZnO/Diamond/Si structure” Ultrasonics Symposium, pp. 377-380(1992)
[9]S. Shikata, H. Nakahata, K. Higaki, A. Hachigo, N. Fujimori, Y. Yamamoto, N. Sakairi and Y. Takahashi, “1.5 GHz SAW bandpass filter using poly-crystalline diamond” Ultrasonics Symposium, pp. 277-280(1993)
[10]H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajihara and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/Diamond/Si structure” Japanese Journal of Applied Physics, vol. 33, pp. 324-328(1994)
[11]H. Nakahata, A. Hachigo, K. Higaki, S. Fujii, Shin-ichi Shikata, “Theoretical Study on SAW Characteristics of Layered Structures Including a Diamond Layer” IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, No. 2, pp. 362-375(1995)
[12]S. Fujii, Y. Seki, K. Yoshida, H. Nakahata, K. Higaki, H. Kitabayashi and S. Shikata, “Diamond wafer for SAW application” IEEE Ultrasonics Symposium, pp. 183-186(1997)
[13]B. Bi, W. S. Huang, J. Asmussen, B. Golding, “Surface acoustic waves on nanocrystalline diamond” Diamond and Related Materials, vol. 11, pp. 677-680(2002)
[14]F. Benedic, M. B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, A. Gicquel, “Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride” Diamond and Related Materials, vol. 13, pp. 347-353(2004)
[15]K. B. Sundaram, A. Khan, “Characterization and optimization of zinc oxide films by r.f. magnetron sputtering” Thin Solid Films, vol. 295, pp. 87-91(1997)
[16]N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, “Epitaxial ZnO piezoelectric thin films for saw filters” Materials Science In Semiconductor Processing, vol. 2, pp. 247-252(1999)
[17]Nuri W. Emanetoglu, George Patounakis, Shaohua Liang, “Analysis of SAW Properties of Epitaxial ZnO Films Grown on R-Al2O3 Substrates” IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, No. 5, pp. 1389-1394 (2001)
[18]S. Muthukumar, C. R. Gorla, N. W. Emanetoglu, S. Liang, Y. Lu, “Control of morphology and orientation of ZnO thin films grown on SiO2/Si substrates” Journal of Crystal Growth, vol. 225, pp. 197-201(2001)
[19]J. J. Chen, Y. Gao, F. Zeng, D. M. Li, F. Pan, “Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films” Applied Surface Science, vol. 223, pp. 318-329(2004)
[20]Jin-Bock Lee, Myung-Ho Lee, Chang-Kyun Park, Jin-Seok Park, “Fabrication and characterization of high frequency SAW device with IDT/ZnO/AlN/Si configuration:role of AlN buffer” Thin Solid Films, vol. 477-478, pp. 296-301(2004)
[21]I. Sayago, M. Aleixandre, L. Ares, M. J. Fernandez, J. P. Santos, J. Gutierrez, M. C. Horrillo, “The effect of the oxygen concentration and the rf power on zinc oxide films properties deposited by magnetron sputtering” Applied Surface Science, vol. 245, pp. 273-280(2005)
[22]I. Sayago, M. Aleixandre, L. Ares, M. J. Fernandez, J. P. Santos, J. Gutierrez, M. C. Horrillo, “Structural studies of zinc oxide films grown by RF magnetron sputtering” Synthetic Metals, vol. 148, pp. 37-41(2005)
[23]Day-Shan Liu, Cheng-Yang Wu, Chia-Sheng Sheu, Fu-Chun Tsia and Cheng-Hsien Li, “The Preparation of Piezoelectric ZnO Films by RF Magnetron Sputtering for Layered Surface Acoustic Wave Device Applications” Japanese Journal of Applied Physics, vol. 45, No. 4B, pp. 3531-3536(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top