跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪明哲
研究生(外文):Ming-Che Hung
論文名稱:以溶膠-凝膠法製作光纖感測器量測pH值
論文名稱(外文):A SOL-GEL BASED FIBER OPTIC SENSOR FOR pH MEASUREMENT
指導教授:蔡五湖
指導教授(外文):Woo-Hu Tsai
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:78
中文關鍵詞:溶膠-凝膠光纖感測酸鹼
外文關鍵詞:sol-gelfiber sensorpH
相關次數:
  • 被引用被引用:5
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們製作一個新穎的酸鹼pH光纖感測器。利用此結構來量測強酸或強鹼的pH值變化,我們所量測到的訊號是在側拋或光柵區域某些特光之波長被吸收而產生的光譜變化。為了增加感測器的靈敏度,我們多模光纖側邊研磨至接近核心的地方,並使磨面有一類似鏡面的光滑平面,使其產生良好的漸逝波反應,並藉由感應式耦和電漿系統(ICP-RIE)在光纖的磨面上蝕刻出長週期光柵,做一光纖光柵與其側拋光纖做一量測比較。除此之外,我們採用溶膠-凝膠法在側拋光纖上合成感測薄膜(包含甲酚紅、溴酚藍及氯酚紅三種指示劑)來量測酸或鹼水溶液的Ph值。並使用光源(鹵素燈、波長690nm雷射及波長1537.86nm之通訊波長雷射)輸入到光纖感測器來分析得到的訊號。本感測器確認可以量測到水溶液之pH 2.4 ~ pH 11.2。此外,光纖感測器還有體積小、容易製作。實驗結果顯示此感測器從強酸到強鹼皆有良好的感測響應。因此,以此結構是適合做為pH酸鹼感測器使用。
In this thesis, we have fabricated a novel side-polished fiber sensor for pH measurement. To utilize the structure to measure the variation of the pH in the acid or base solution, we measure the signal by the particular wavelength was absorbed to change the spectrum within the side-polished or the grating region. To increase the sensitivity of the sensor, we polish the surface of the fiber into the core region which have a good Evanescent-wave response ,and then a long period grating surface was also made on the side-polished surface by virtue of ICP RIE technique. The comparison of both side-polished and long period grating fiber sensors have been carried out. Beside, we introduced a sol-gel method to synthesize the sensing film (including three indicators such as cresol red, bromophenol blue and chlorophenol red) on the polished surface of the fiber pH concentration measurement. The light sources (halogen light, 690nm laser, 1537.86nm laser) were used to define the light into the fiber sensor to sensing the range of pH concentration. It identification the pH value change from 2.4 to 11.2 can be measured by the sensor we proposed. Moreover, small size and easy fabrication are the advantages of the sensors. The experimental results haveing very good pH response from strong acid to strong base.
誌謝 i
英文摘要 iii
中文摘要 v
表目錄 vii
圖目錄 viii
章節
一緒論 1
二原理 8
2.1 側磨光纖原理 8
2.2側磨光纖的功率衰減損失 10
2.3光纖裝柵效應 14
2.3.1模態匹配法 14
2.3.2模擬週期性光柵之結果 16
2.4溶膠-凝膠法理論 19
2.4.1簡介 19
2.4.2影響反應的因素 22
三設計和製作 27
3.1簡介 27
3.2製作側拋光纖 27
3.2.1側拋技術製程 30
3.3製造光纖光柵 32
3.3.1黃光微影技術 32
3.3.2ICP-RIE 乾蝕刻技術 35
3.4溶膠-凝膠製程 38
3.4.1製作過程 38
3.4.2所需的化學試劑 39
3.4.3以溶膠-凝膠技術在光纖上製作有機/無機之材料混成 40
四結果與討論 44
4.1簡介 44
4.2側拋光纖感測器 44
4.2.1側拋光纖pH感測器之結果 46
4.3光柵式單模pH感測器 56
五結論及未來工作 58
Reference 60
[1]E. Udd, “Fiber Optic Smart Structures”, IEEE Proceedings. Vol. 84, pp. 60–67, 1996.
[2]Bruno J.-C. Deboux, Elfed Lewis, Patricia J, Scully, and Robert Edwards, “A Novel Technique for Optical Fiber pH Sensing Based on Methyllene Blue Adsorption”, JOURNAL OF LIGHTWAVE TECHNOLOY, VOL. 13, NO. 7, JULY 1995.
[3]M. A. Hughes and A. D. Drake, “A Fiber Optics Chemical Sensor”, Department of Electrical and Computer Engineering University of New Hampshire Durham, New Hampshire 3824-3591.
[4]J. M L. Higuera, A. Cobo, J. Echevarria, F. J. Madruga, and J. L. Arce, “Simultaneous temperature and acceleration optical fiber sensor system for large structures monitoring”, IEEE Lasers and Electro-Optics Society, Vol. 2, pp. 462–463, 2000.
[5]B. Guldimann, P. A. Clerc, and N. F. D. Rooij, “Fiber-optic accelerometer with micro-optical shutter modulation and integrated damping”, IEEE Optical MEMS, pp. 141–142, 2000.
[6]G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers”, J. Lightwave Technol., Vol. 18, pp. 1233–1243, 2000.
[7]F. P. Corera, A. Gaston, and J. Sevilla, “Relative humidity sensor based on side-polished fiber optic”, IEEE Instrumentation and Measurement Technology Conference, Vol. 1, pp. 17–22, 2000.
[8]O. Suzuki, M. Miura, M. Morisawa, and S. Muto, “POF-type optic humidity sensor and its application [as breathing-condition monitor]”, Optical Fiber Sensors Conference Technical Digest, Vol. 1, pp. 447–450, 2002.
[9]F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating”, IEEE J. Sensors, Vol. 2, pp. 482–487, 2002.
[10]K. Tajima and Y. Miyajima, “Viscosity-matched P2O5-SiO2 core single-mode fiber”, Optical Fiber Communication Conference, pp. 4–5, 1997.
[11]M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers”, IEEE Photon. Technol. Lett., Vol. 5, pp. 812–814, 1997.
[12]M. Vries, B. D. Zimmermann, A. M. Vengsarkar, and R. O. Claus, “Liquid core optical fiber temperature sensors”, IEEE Southeastcon, Vol. 2, pp. 1135–1138, 1991.
[13]Brambilla and H. Rutt, “Fiber Bragg gratings with ultra-high temperature-stability”, Optical Fiber Communication Conference, pp. 660–662, 2002.
[14]J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber”, IEEE Instrumentation and Measurement, Vol. 50, pp. 1656 –1660, 2001.
[15]F. Chiadini, A. Paolillo, and A. Scaglione, “A reflectometric optical fiber temperature sensor”, IEEE J. Sensors, Vol.3, pp. 80–86, 2003.
[16]L. Wang, G. C. Lin, and C. C. Yang, “Thermal performance of a solder-coated optical fiber Bragg grating sensor”, IEEE Lasers and Electro-Optics Society Annual Meeting, Vol. 2, pp. 560–561, 1997.
[17]C. P. A. Pennisi, L. Leija, W. H. Fonseca, and A. Vera, “Fiber optic temperature sensor for use in experimental microwave hyperthermia”, IEEE Sensors, Vol. 2, pp. 1028–1031, 2002.
[18]A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers”, IEEE Photon. Technol. Lett., Vol. 12, pp. 1043–1045, 2000.
[19]A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application”, J. Lightwave Technol., Vol. 10, pp. 1466–1472, 1992.
[20]E. Cibula, D. Donlagic, and C. Stropnik, “Miniature fiber optic pressure sensor for medical applications”, IEEE Sensors, Vol. 1, pp. 711–714, 2002.
[21]S. Kreger, S. Calvert, and E. Udd, “High pressure sensing using fiber Bragg gratings written in birefringent side hole fiber”, Optical Fiber Sensors Conference Technical Digest, Vol. 1, pp. 355–358, 2002.
[22]M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D .C. Jones, and Stevens, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications”, IEEE J. Sensors, Vol. 3, pp. 102–107, 2003.
[23]R. R. J. Maier, J. S. Barton, J. D .C. Jones, S. McCulloch, G. Burnell, and I. Davis, “"T-shaped" fibre Bragg grating sensor geometry for strain based metrology”, Optical Fiber Sensors Conference, Vol.1, pp. 351–354, 2002.
[24]J. C. C. Silva and H. J. Kalinowski, “Strain studies in electrical energy transmission cables using an optical fiber Bragg grating sensor”, Microwave and Optoelectronics, Vol. 1, pp. 313–316, 2001.
[25]J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing”, IEEE trumentation and Measurement Technology Conference, Vol. 3, pp. 1463–1466, 2001.
[26]H. J. Kwon, J. O. Spiker, H. Balcer, and K. A. Kang, ”A kinetic study on fiber optic immunosensor for the detection of protein C”, BMES/EMBS Conference, Vol. 2, pp. 807, 1999.
[27]C. C. Wang, “Studies of optical fiber biosensors”, BMES/EMBS Conference, Vol. 2, pp. 827, 1999.
[28]T. V. Tulaikova, “New kind of sensors based on amalgamation of fiber optic and seaweed to control pollution in a water”, Microtechnologies in Medicine and Biology Conference, pp. 370–374, 2000.
[29]D. Jiang, E. Liu, X. Chen, and J. Huang, “Study on a new fiber optic glucose biosensor”, Optical Fiber Sensors Conference, Vol. 1, pp. 451–454, 2002.
[30]K. Kurihara, H. Ohkawa, Y. Iwasaki, T. Tobita, O. Niwa, and K. Suzuki, “A fiber-optic microdevice for surface plasmon resonance sensing using a chemically-etched single-mode fiber”, IEEE-EMB Microtechnologies in Medicine & Biology, pp. 384–385, 2002.
[31]L. Bansal, S. Khalil, and M. A. El-Sherif, “Fiber optic neurotoxin sensor”, IEEE Bioengineering Conference, pp. 221–222, 2002.
[32]M. Kimura and K. Toshima, ” A new type optical fiber vibration-sensor”, Solid State Sensors and Actuators , Vol. 2, pp. 1225–1228, 1997.
[33]M. Kamiya and H. Ikeda, “Simultaneous transmission of vibration sensor position control data and measured vibration data in opposite directions through single plastic optical fiber”, IEEE EFTA, Vol. 1, pp. 82–86, 1996.
[34]V. T. Chitnis, S. Kumar, and D. Sen, “Optical fiber sensor for vibration amplitude measurement”, J. Lightwave Technol., Vol. 7, pp. 687–691, 1989.
[35]J. A. Ferrari, E. M. Frins, and W. Dultz, “Optical fiber vibration sensor using (Pancharatnam) phase step interferometry”, J. Lightwave Technol., Vol. 15, pp. 968–971, 1997.
[36]K. A. Murphy, B. R. Fogg, R. O. Claus, and A. M. Vengsarkar, “Spatially-weighted Vibration Sensors Using Tapered Two-mode Optical Fibers”, J. Lightwave Technol., Vol. 10, pp. 1680–1687, 1992.
[37]W. Thongnum, N. Takahashi, and Takahashi, “Temperature stabilization of fiber Bragg grating vibration sensor”, Optical Fiber Sensors Conference, Vol, 1, pp. 223–226, 2002.
[38]P. J. Kajenski, P. L. Fuhr, and K. R. Hustion, “Mode Coupling and Phase Modulation in Vibrating Waveguides”, J. Lightwave Techol., Vol, 10, pp. 1297–1310, 1992.
[39]T. Y. Kim, J. H. Nam, K. S. Suh, and T Takada, “Acoustic Monitoring of HV Equipment with Optical Fiber Sensor”, IEEE Dielectrics and Electrical Insulation Transactions, Vol. 10, pp. 266–270, 2003.
[40]J. S. Schoenwald and L. R. Bivins, “RF Amplitude Modulated Fiber Optic Acoustic Sensing”, IEEE Ultrasonics Symposium, pp. 327–330, 1990.
[41]M. Kimura and K. Toshima, “A New Type Optical Fiber Vibration-Sensor”, Solid-State Sensors and Actuators, pp. 1225–1228, 1997.
[42]W. Johnstine, G. Thrusby, D. Moodie, R. Varshney and B. Culshaw, “Fiber optic wavelength channel selector with high resolution”, Optics Communications, 188, pp. 301–305, 2001.
[43]L. Dong, P. Hua, T. A. Birks, L. Reekie and P. St. J. Russel, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a bragg grating assisted mismatched coupler”, J. Lightwave Technol, Vol.8, No.12, pp. 1656–1658, 1996.
[44]A. Gloag, K. McCallion, L. Langford, and W. Johnstone, “Tunable erbium fiber laser using a novel overlay bandpass filter”, Opt. Lett., Vol.19, No.11, pp. 801–803, 1994.
[45]K. McCallion, G. Fawcett, and W. Johnstone, “Tunable in-line fiber-optic bandpass filter”, Opt. Lett., Vol.19, No.8, pp. 542–544, 1994.
[46]C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel dropping filter using a high index overlay wave-guide”, Opt. Letter., Vol.12, No.12, pp. 284, 1987.
[47]W. V. Sorin, B. Y. Kin, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical filters”, Opt. Lett., Vol.11, pp. 581–583, 1986.
[48]S. Creaney, W. Johnstone, and K. McCallion, “Continuous-Fiber Modulator with High-Bandwidth Coplanar Strip Electrodes”, IEEE Photon. Technol. Lett., Vol.8, No.3, pp. 355–357, 1996.
[49]W. Johnstone, S. Murray, G. Thrusby, M. Gill, A. McDonach, D. Moodie, and B. Culshaw, “Fiber optic Modulator using active multimode wavelength overlay”, Electron. Lett., Vol.27, pp. 894–896, 1991.
[50]Tseng. Shiao-Min, and Chen. Chin-Lin, “Low voltage optical fiber switch”, Japanese Journal of Applied Physics, Vol.37, pp. L42–L45, 1998.
[51]K. McCallion, W. Johnstone, and G. Thrusby, “Investigation of optical fiber switch using electro-optic interlays”, Electron. Lett., Vol.28, pp. 410–411, 1992.
[52]A. Gloag, N. Langford, K. McCallion, and W. Johnstone, “Tunable er-bium fiber laser using a novel overlay bandpass”, Opt. Lett., Vol.19, pp. 801–803, 1994.
[53]Su-Pin Ma and Shiao-Min Tseng, “High-performance side-polished fiber and applications as liquid crystal clad fiber polarizers”, J. Lightwave Technology Journal, Vol.15, pp. 1554–1558, 1997.
[54]Real Vallee, and Gang He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler”, J. Lightwave Technol, Vol.11, No.7, pp. 1196–1203, 1993.
[55]Water Johnstone, G. Stewart, T. Hart, and B. Clushaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices”, J. Lightwave Technol, Vol.8, No.4, pp. 538–544, 1990.
[56]Shiao-Min Tseng, Member, IEEE, Kuang-Hu Hsu. Hon-Sco wer and Kun-Fa Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay”, J. Lightwave Technol, Vol.9, No.5, pp. 628–630, 1997.
[57]A. W. Snyder, and A.J. Stevenson, “Polished type couplers acting as polarizing splitter”, Opt. Lett., Vol.12, pp. 254–256, 1986.
[58]W. Stevenson, G. Thrusby, D. Moodie and K. McCallion, “Fiber-optic refractometer that utilizes multimode waveguides overlays devices ”, Opt. Lett., Vol.17, pp. 1538–1540, 1992.
[59]G. Raizada and B. P. Pal, “Refractometers and tunable components based on side-polished fibers with multimode overlay waveguide: Role of the superstrate ”, Opt. Lett., Vol.17, pp. 399–401, 1996.
[60]Fatima Perze Corera, Ainhoa Gaston, and Joaquin Sevilla, “Relative humanity sensor based on side-polished fiber optic”, IMTC/2000 IEEE Instrumentation and Measurement Society , Vol22, pp. 17–22, 2000.
[61]Alberto Alvarez-Herrero, H. Guerrero, T. Tam, and D. Levy, “High sensitivity temperature sensor based on overlay on side-polished fiber”, IEEE Photon. Technol. Lett., Vol.22, No, 8, pp. 1043–1045, 2000.
[62]Ottokar Leminger, and R. Zengerle, “Narrow-band directional coupler made of dissimilar single-mode fibers with different cladding reflective indexes”, J. Lightwave Technol., Vol.8, No.9, pp. 1289–1291, 1990.
[63]Anurag Sharma, Jacintha Kompella and Prasanna K. Mishra, Member, “Analysis of fiber direction couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol., Vol.8, No.2, pp. 143–151, 1990.
[64]M. Tabib-Azar, Evanescent Microwave Microscopy for High-Speed and High-Resolution Material Characterizations, Kluwer Academic Publishing,Boston, 1999.
[65]M. Tabib-Azar, Integrated Optics and Microstructure Sensors, Kluwer Academic Publishing,Boston, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top