跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳明彥
研究生(外文):Ming-yen Wu
論文名稱:異丙醇電漿聚合細胞親和性表面之研究
論文名稱(外文):Cell-compatibility of plasma polymer films prepared from isopropyl alcohol
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:111
中文關鍵詞:細胞貼附率腸道細胞培養表面改質生物適應性異丙醇電漿細胞增生性
外文關鍵詞:Isopropyl alcohol plasma/ Biocompatibility of a
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
摘要
聚苯乙烯(PS)為熱塑性塑膠,目前廣泛應用於食品包裝及資訊家電,成本低,可作為培養細胞之材料;具有耐衝擊性,亦可作為身體植入材之優良選擇。由於其本身屬疏水性及化學安定性,較不利於細胞之貼附,所以必須進行適當的表面機能化改質,且不會對材料內部的結構造成破壞,以達到以下幾項基本要求: (1) 親水性-增進細胞親合性。 (2) 高含氧量-促進細胞之貼附及增生。 (3) 生物降解性-順利誘導細胞增生。因此,本研究以聚苯乙烯及矽晶片為基材,利用表面高能氬氣電漿前處理,以清潔材料表面,接著施以異丙醇(Isopropyl alcohol)電漿處理,製備均勻細緻的薄膜,增進材料表面之親水性及含氧量,促進細胞之貼附及增生。本研究探討所聚合超薄膜受電漿條件的影響,如沉積速率受單體承受能量W/P的增加影響,隨W/P增加至0.8 (40W 50mtorr)而達最大值,然後�隊p;其親水性亦有相同之趨勢。由掃描式電子顯微鏡觀察,經異丙醇電漿處理後之聚苯乙烯及矽晶片, 表面披覆一層相當均勻細緻的沉積膜,在W/P=0.8時,細緻的薄膜上有分佈似雪花的島狀物產生。異丙醇電漿聚合薄膜含有-C=O,-OH及-COOH等結構;故從水接觸角測試可知聚苯乙烯(PS)從70°降至51°改善親水性。薄膜在PBS溶液中有衰退現象,二十天後剩下約45%wt,而在40W 4.85Pa 15min條件下沉積的薄膜,保存在空氣中15天後,其水接觸角回復至約53°。腸道細胞(Caco2)培養, 結果發現PS經過電漿處理後,細胞貼附率可達九成,細胞增生性大幅改善,甚至比市售的細胞培養皿(NUNC:159910, 70NT/per)有更好的貼附性及增生性,而異丙醇電漿處理便宜且低汙染,故作為生醫材料之表面改質實為優良之選擇。
ABSTRACT
The biocompatibility of a material is largely governed by its surface chemistry, topography and elastic properties. Surface modification by plasma polymerization is well-know as an effective method to improve the blood compatibility of substrates such as PP and Si-wafer. The plasma film is smooth, uniform and pinhole-free, also any specified geometry. A number of studies have shown plasma deposited films can lead to enhanced levels of cell attachment which has been attributed to the presence of various functional groups including: hydroxyl, carbonyl, carboxyl and amino. These groups were formed by the reaction of the residual free radical with oxygen or water in atmosphere. The chemical component of plasma film was influenced by the operation parameters W/P of a given experiment. However, plasma polymerization invariably produces films containing a variety of functional groups which can make the study of cell attachment to these surfaces complex as it is often not clear whether it is total oxygen concentration, the concentration of a particular functional group or rather their relative concentration which leads to enhanced cell attachment and proliferation. Some recent studies have shown that chemically complex surfaces are more attractive for the attachment of bovine aortic endothelial cells than those containing individual chemical groups.
Films containing minimal carboxylic acid content can be prepared by the plasma polymerization of isopropyl alcohol . A related aspect is the production of chemically patterned surfaces as this enables the study of cell attachment and spreading on substrates with areas of differing surface chemistry under otherwise identical culture conditions. Plasma polymerization lends itself well to the production of chemically patterned surfaces as has been demonstrated in a number of recent studies. This study involves the investigation of two aspects of plasma polymerization for the production of biocompatible surfaces. The first is to study the deposition of thin films from isopropyl alcohol plasma. These films will allow the study of the attachment and proliferation of Caco-2 cells in the absence of any carboxylic acid groups. The second part of this paper investigates the growth of cells on chemically patterned substrates. The attachment behavior on chemically patterned surfaces will be studied up to 120 h to investigate whether the absence of carboxylic acid affects the long term growth of cells on these surfaces.
TABLE OF CONTENTS
ENGLISH ABSTRACTI
CHINESE ABSTRACIII
CONTENTSIV

Chapter 1 INTRODUCTION
1.1 Surface modification2
1.2 Plasma modification
1.2.1 Plasma theory3
1.2.2 Plasma etching6
1.2.3 Plasma polymerization6
1.2.4 Free radicals in Plasma polymers8
1.2.5 Biomedical applications of plasma-deposited thin films8

Chapter 2 Literature review
2.1 Plasma modification12
2.2 Degradation and stability of plasma polymers13
2.3 Quartz crystal microbalance
2.3.1 Theory14
2.3.2 Applications of QCM in sensors16
2.4 Caco-2 cells18

Chapter 3 Experiments
3.1 Materials and reagents21
3.2 Flow chart of experiments22
3.3 Sample preparation (sample surface cleaning)23
3.4 Plasma deposition
3.4.1 Argon Plasma treatment23
3.4.2 IPA plasma deposition treatment23
3.5 Cac0-2 Cells culture and proliferation24
3.6 Characterstics analysis
3.6.1 The thickness of plasma films(α-step)25
3.6.2 ESCA(XPS) analysis25
3.6.3 Scanning electron microscope(SEM)26
3.6.4 Atomic force microscope(AFM)26
3.6.5 Electron spectroscopy for chemical analysis27
3.6.6 Water contact angle test27

Chapter 4 Result and discussion
4.1 The thickness of plasma films29
4.2 chemical structure of surface( Micro/ FTIR)29
4.3 SEM29
4.4 Atomic forced microscopy(AFM)31
4.5 Wettabilities of the modified PP and Si wafer32
4.6 Influence of storage time33
4.7 Cell culture34

Chapter 5 Conclusions37

Reference40
REFERENCE
[1] F.F. Bunshan et al., “Deposition Technologies for Films and Coating” Noyes Publications, New Jersey,(1982).
[2] O.Murat and S. Hasan, Trends in food Sci. & Tech., 9, p.159, (1998).
[3] Podczeck and Fridrun, J. of Pharmaceutics, 178, p.93, (1999).
[4] H. Dong and T. Bell, Surf. Coat. Technol., 111, p.29, (1999).
[5] Min-Shyan Sheu, David M. Hudson and Ih-Houng Loh, Advanced Surface Technology, P865.
[6] Surface modification of polymers:chemical, biological and surface analytical challenges; Buddy D.Ratner; Biosensors & Bioelectronics 10(1995) 797-804.
[7] Y. Uyama, and Y. Ikada, J.Appl. Polym. Sci., 36, (1988) 1087.
[8] M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, Macromolecules, 19, (1986) 1804.
[9] H. Iwate A. Kishida, M. Suzuki, Y. Hata, and Y. Ikada, J. Appl. Polym. Sci., Part A. Polym. Chem., 26, (1988) 3309.
[10] G. H. Hsiue and W. K. Hang, J.Appl. Polym. Sci., 30, (1985) 1023.
[11] Y. Uyama, M. Tadokoro and Y. Ikada, J.Appl. Polym. Sci., 39, (1990) 48.
[12] M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada., Macromolecules., 19, (1986) 1804.
[13] H. Iwate, A. Kishida, M. Suzuki, Y. Hata, and Y. Ikada., J. Appl. Polym. Sci., Part A. Polym. Chem., 26, (1988) 3309.
[14] Y. L. Hsien, and M. Wu., J. Appl. Polym. Sci., 43, (1991) 2067.
[15] Y. L.Hsien, D. Timm, and M. Wu., J. Appl. Polym. Sci., 5, (1988).
[16]D. H. Reneker and L. H. Bolz, J. Macromol. Sci. Chem. ,10, (1976) 599.
[17] Cuatrecasas, P. and Anfinsen, C.B.
[18] G.C.M. Steffens, L.Nothdurft, G. Buse, H. Thissen, H. Hocker, D.Klee, Biomaterials, 23, (2002) 3523.
[19] Biomaterials Science ; Buddy D.Ratner, Allan S. Hoffman, Frederick
J Schoen , Jack E.Lemons.
[20] Matrices for tissue engineering-scaffold structure for a bioartificial liver support system; J. Mayer, E. Karamuk , T. Akaike , E. Wintermantel ; Journal of Controlled Release 64 (2000) 81-90.
[21] Takashi Sato, Guoping Chen, Takashi Ushida , Tomoo Ishii , Naoyuki Ochiai , Tetsuya Tateishi, Materials Science and Engineering C17(2001) 83-89.
[22] Lo H, Kadiyala S, Guggino SE, Leong KW, J Biomed Mater Res 30 (1996) 475-484.
[23] Whang K, Thomas CH, Healy KE, Nuber GA, Polymer 36 (1995) 837-842.
[24] Freed L, Marquis JC, Nohria A, Emmanual J, Mikos AG, J Biomed Mater Res 27 (1993) 11-23.
[25] Harris LD, Kim BS, Mooney DJ, J Biomed Mater Res 42 (1998) 396-402.
[26] Park A, Wu B, Griffith LG, J Biomater Sci Polym Ed 9 (1998) 89-110.
[27] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Biomaterial 14 (1993) 323-330.
[28] Agrawal CM, McKinney JS, Lanctor D, Athansious KA, Biomater 21 (2000) 2443-2452.
[29] Khang,G, Kang, Y., Lee, H., and Park, J., Biomed.Mater.Eng., 6, (1996) 335.
[30] Gilson K., Ju Hyoung Jeon, Jin Whan Lee, Soon Chae Cho, Hai Bang Lee, Bio-Medical Material and Engineering ,7, (1997) 357.
[31] Chantal E. Holy, Stephen M. Dang, John E. Davies, Molly S. Shoichet, Biomaterials, 20, (1999) 1177.
[32] Shuhei Y., Irma Van D., Akiko Y., Hiroshi K., Kazuyuki S.,FEBS Letters, 458, (1999) 327.
[33] M. Hanthamrongwit, W.H. Reid, M.H. Grant, Biomaterials, 17, (1996) 775.
[34] C.R. Lee, A.J. Grodzinsky, M. Spector, Biomaterials, 22, (2001) 3145.
[35] Ivan L. Valuev, Vladimir V. Chupov, Lev I. Valuev, Biomaterials, 19, (1998) 41.
[36] S.A. Mitchell, M.R. Davidson, N. Emmison, R.H. Bradley, Surface Science 561 (2004) 110-120.
[37] A.S.G. Curtis, J.V. Forrester, C. Mcinnes, F. Lawrie, J. Cell Biol. 97 (1983) 1500.
[38] R.M. France, R.D. Short, E. Duval, F.R. Jones, R.A. Dawson, S. MacNeil, Chem. Mater. 10 (1998) 1176.
[39] B.K. Brandley, O.A. Weisz, R.L. Schnaar, J. Biol. Chem. 262 (1987) 6431.
[40] C.D. Tidwell, S.I. Ertel, B.D. Ratner, B.J. Tarasevich, S. Atre, D.L. Allara, Langmuir 13 (1997) 3404.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top