跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施智仁
研究生(外文):Jhih-ren Shih
論文名稱:脈衝調變RF電漿對氫化非晶矽太陽能電池本質層薄膜的價態與穩定性之影響
論文名稱(外文):Influence of modulated RF silane plasma on the gap states and stabilityof the intrinsic layer of a-Si:H Solar Cell
指導教授:楊木榮楊木榮引用關係
指導教授(外文):Mu-rong Yang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:80
中文關鍵詞:太陽能電池
外文關鍵詞:solar cell
相關次數:
  • 被引用被引用:6
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:3
氫化非晶矽(a-Si:H)薄膜為一短程有序的結構,被應用於半導体和薄膜太陽電池,具有製程簡單、成本低廉等特性,然而由於結構缺陷較多,非晶矽太陽能電池轉換效率較低於結晶矽太陽能電池。如何有效改善轉換效率成為當前重要的研究議題。
本實驗利用化學氣相沉積法(PECVD)在200 ℃下分別於康寧1737F玻璃、矽晶片與片電阻<15 Ω的ITO玻璃基板上製備本質層薄膜與太陽電池,太陽電池結構為glass/ITO/pii'n/Al。本實驗主要討論改變製程參數(脈波調變頻率)對氫化非晶矽本質層薄膜及太陽電池的電性及光學性質之影響。所製得之本質層薄膜以RAMAN、FTIR、AFM、SE、UV-VIS、I-V等量測分析其性質。對本質層薄膜的研究結果顯示,藉由改變脈波調變頻率可有效減少薄膜中的氫氣總含量,減少SiH2鍵結的生成,改善微結構變數,提升光電流與光暗電導比。由於本質層薄膜品質的改善,太陽電池的短路電流提高,轉換效率提升,且其理想因子(Ideal Factor)值較低,為一較理想的二極體元件。
Amorphous silicon (a-Si) thin film with a short range order has been extensively used in semiconductors and thin film solar cells owing to its simple manipulation processes and low cost. However, the transition efficiency of the amorphous silicon solar cell is much lower than the crystalline silicon solar cell due to the much higher structure defects. It has been an important issue on how to improve the transition efficiency of amorphous silicon solar cells effectively.
Hydrogenated amorphous silicon (a-Si:H) intrinsic thin films and solar cells were prepared by radio-frequency plasma enhanced chemical vapor deposition (PECVD) on Corning 1737F glasses, silicon wafers and ITO glasses respectively. The structure of the solar cell is glass/ITO/pii'n/Al. Different pulse modulation plasma manipulation processes were employed in this study. The relationships among the fabrication parameters( modulation frequency) of intrinsic layer, the electrical performance and optical properties of solar cells were investigated. The associated experiments involved RAMAN, FTIR, AFM, SE, UV-VIS, and I-V measurements. It can seen that the microstructure fraction ratio, photon current and photon to dark conductivity ratio were improved by different pulse modulate frequency due to the decrease of the total hydrogen content and SiH2 bonding in intrinsic thin films. The improvement of the intrinsic layer properties (i.e., less defects) increases the short current and transition efficiency and make the solar cells as ideal diodes with lower ideal factors.
摘要 I
Abstract V
目錄 V
圖目錄 IX

表目錄 XII
第一章 1
緒論 1
1.1導論 1
1.2 研究目的 3
1.3 論文架構 3
第二章 4
文獻回顧 4
2.1 非晶矽薄膜簡介 4
2.2 SW Effect對非晶矽薄膜太陽能電池的影響 6
2.3 矽氫鍵結對非晶矽薄膜太陽能電池的影響 7
2.4 脈衝調變(pulse-modulated)非晶矽薄膜 9
2.5 隙態密度(density of state)(defect state)模型 11
2.6 研究目的 12
第三章 13
研究方法 13
3.1 製程設備 13
3.2實驗流程圖 15
3.3基板的清洗 15
3.4實驗參數設計 17
3.5薄膜之量測 18
(a)薄膜厚度與光能隙量測 18
(b)光暗電流量測 19
(c)活化能(Ea)量測 19
(d)矽奈米晶粒結晶體積比(XC)量測 20
(e)薄膜矽氧、矽氫鍵結量測分析 21
(f)薄膜表面粗糙度分析 22
(g)氫化非晶矽薄膜氫含量分析 22
3.6太陽電池之光電特性分析 23
第四章 27
結果與討論 27
4.1氫化非晶矽薄膜的光學性質之探討: 27
4.2脈波調變電漿對氫化非晶矽薄膜的結構之影響: 29
4.3脈波調變電漿對氫化非晶矽薄膜的成分之影響: 30
4.4脈波調變電漿對氫化非晶矽薄膜的鍍率與表面型態之影響: 33
4.5脈波調變電漿對氫化非晶矽薄膜的電性的影響: 34
4.6脈波調變電漿對太陽能電池光電特性的影響: 35
第五章 結論 64
參考文獻 65
1.Adolf Goetzberger, Christopher Hebling, Hans-Werner Schock, Materials Science and Engineering R40 (2003) 1-46
2.J. Yang, a. Banerjee and S. Guha, Appl. Phys., 70, 2975 (1997)
3.S. Guha, J, Yang, A. Banerjee, T. Glatfelter, K. Hoffman, S. R. Ovshinsky, M. Izu, H. C. Ovshinsky and X. Deng, Mater. Res. Soc. Symp. Proc., 1994, p.695
4.Jeffrey C. Yang, Prog. Photovolt. Res. Appl.6 181-186 (1998)
5.H.F. Sterling and R.C.G Swann, Chemical vapor deposition promoted by r.f. discharge, Solid –State Electron., 8(8), 653 (1965).
6.W. Spear and P. LeComber, Substitutional doping of amorphous silicon, Solid State Comm.,17 (9), 1193 (1975)
7.R.E.I Schropp and M. Zeman, Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, Kluwer Academic Publishers, 1998
8.D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., Vol. 31, No. 4, 15 August 1977
9.S. Guha and J. Yang, Scott J. Jones, Y. Chan and D. L. Williamson, Appl. Phys. Lett. 61 (12), 21 Sept.,1992, p1444
A.H. Mahan, D. L. Williamson, B. P. Nelson, and R. S. Crandall, Solar Cells, 27, 465 (1989).
10.M. Stutzmann, W.B. Jackson and C.C. Tsai. Phys. Rev. B32(1985) 23
11.M. Ohsawa, T. Hama, T. Akasaka, T. Ichimura, H. Sakai, S. Ishida and Y. Uchida: Jpn. J. Appl. Phys. 24 (1985) L838
12.G. G. Qin and G. L. Kong: Solid State Commun. 71 (1989) 41
13.D. Redfield and R. H. Bube: J. Non-Cryst. Solids 137&138 (1991) 215
14.R. Martins, I. Ferreira, A. Cabrita, E. Fortunato, Journal of Non-Crystalline Solids v266-269, 200, p1094-1098
15.N. Wyrsch and A Shan, First WCPEC; Dec.5-9, 1994; Hawaii
16.Fritzsche,1998
17.D.L. Staebler, C.R. Wronski, J. Appl. Phys. 51, 3262-3268 (1980)
18.Wronski,1997
19.S. Guha; J. Yang, W. Czubatyj, S. J. Hudgens, and M. Hack, Appl. Phys. Lett. 42, 588 (1983).
A.Matsuda and K. Tanaka, J. Appl. Phys. Vol. 60 No.7, 1 Oct. 1986 p2351
20.Y. Toyoshima, K. Arai, A. Matsuda and K. Tanaka, In Situ characterization of the growing a-Si:H surface by IR spectroscopy, J. Non-Cryst. Solids, 137-138, 765-770 (1991).
A.Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A.Yuuki, and J. Perrin, Temperature dependence of the sticking and loss probabilities of silyl radicals on hydrogenated amorphous silicon, Surf. Sci., 227, 50 (1990)
21.G. Bruno, P. Capezzuto, and A. Madan, Plasma deposition of amorphous silicon-based materials, Academic Press, 1995
22.T. Takagi, R.Hayashi, G. Ganguly, M. Kondn, A. Matsuda, Thin Solid Films 345, (1999), p75-79
23.N. Nakamura etc., Jpn. J. of Appl. Phys. v28, 10 Oct. 1989, p1762
24.T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, Journal of Non-Crystalline Solids 299–302 (2002) 1116–1122
25.Thin Film Solar Cell, Edited by J.Poortmans and V. Arkhipov, IMEC, Leuven, Belgium, CH5
26.R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, New York, 1991.
27.Y.S. Tsuo, W. Juft, Appl. Phys. Commun. 10 (1990) 71.
28.“DEPOSITION OF AMORPHOUS SILICON SOLAR CELLS VIA THE PULSED PECVD TECHNIQUE”, Scott Morrison and Arun Madan, 2000 IEEE
29.H. Kirimura, etc Jpn J Appl Phys Part 1, No. 7B, V33, 1994, p4839
A.Bouchoule, A. Plain, L. Boufendi, J. Ph. Blondeau, and C. Laure, J. Appl. Phys. 70 (4), 15 August 1991 p1991
30.Y. Watanabe, M. Shiratani, and H. Makino, Appl. Phys. Lett. 57(16), 15 Oct. 1990, p1616
31.N. Itabashi, K. Kato, N. Nishiwaki. T. Goto, C. Yamada, and E. Hirota, Jpn. J. Appl. Phys. 27, L1565 (1988)
32.Y. Watanabe, M. Shiratani, Y. Kubo, I Ogawa, and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988)
33.Ujjwal K. Das, S. Morrison and Arun Madan, Mat. Res. Soc. Symp. Proc. V175 A26.6.1 2002
34.Morrel H. Cohen, H. Fritzsche and S.R. Ovshinsky, Physical Review Letters Vol 32, No 20,1065(1969)
35.http://mtheiss.com/ojl_optr.h
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top