跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳英傑
研究生(外文):Ying-Jie Wu
論文名稱:電漿前後處理對射頻電漿輔助化學氣相沉積法沉積類鑽碳膜之影響
論文名稱(外文):The effects of plasma pre-treatment and post-treatment on the diamond-like carbon films synthesized by RF plasma enhanced chemical vapor deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:類鑽碳膜前處理後處理電漿輔助化學氣相沉積氬氣氫氣
外文關鍵詞:DLCpre-treatmentpost-treatmentPECVDArgonhydrogen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以電漿輔助化學氣相沉積系統沉積類鑽碳膜,觀察氫氣及氬氣電漿在沉積碳膜前後及沉積過程中轟擊試片表面對碳膜結構與機械性質之影響。在沉積碳膜前電漿前處理實驗方面,主要以改變電漿前處理時之氬氣壓力及氫氣電漿功率來改變基材之表面粗糙度,之後以相同電漿條件沉積碳膜;在沉積碳膜過程中摻雜氫氣與氬氣之實驗方面,主要在沉積過程中改變乙炔對氬氣及乙炔對氫氣之流量比沉積碳膜;在沉積碳膜後電漿後處理實驗方面,則以改變氬氣電漿與氫氣電漿於碳膜表面之轟擊時間及不同比例氬氣與氫氣之混合電漿於碳膜表面之轟擊。經由各種處理之類鑽碳膜將測量其碳膜沉積速率、表面粗糙度、奈米硬度、楊氏模數、拉曼結構、殘留應力及奈米磨耗深度。
實驗結果顯示,經由不同條件電漿前處理之基板其表面粗糙度會有所變化且基板粗糙度對所沉積之碳膜粗糙度有一定的影響,但對於碳膜之硬度、楊氏模數、拉曼結構及殘留應力之影響則不明顯。在沉積碳膜過程中加入氫氣與氬氣電漿之實驗顯示,隨著氫氣與氬氣流量比的增加其碳膜表面粗糙度下降、硬度下降、楊氏模數下降及sp2結構比例增加,其中沉積過程中加入氫氣電漿對碳膜之殘留應力及磨耗深度也有所影響。在沉積碳膜後經氬氣與氫氣電漿後處理之類鑽碳膜,隨著後處理之時間增長碳膜表面粗糙度下降、硬度、楊氏模數下降且會改變碳膜之磨耗特性,在殘留應力上則無明顯之影響。
Diamond-like carbon (DLC) films were deposited by RF plasma enhanced chemical vapor deposition and the effects of pre-treatment and post-treatment of H2 or Ar plasma and the effects of C2H2/H2 and C2H2/Ar ratios on the structure and properties of DLC films were investigated. In the plasma pre-treatment, Ar plasma of different pressures and H2 plasma of different RF powers were used to modify the surface roughness of substrate. For the plasma post-treatment, the effects of post-treatment time and Ar/H2 ratio were studied. Deposition rate, surface roughness, nanohardness, young’s modulus, Raman analysis, residual stress and nano-wear depth of DLC films after various treatments were measured.
Surface roughness characterized by AFM showed that plasma pre-treatment modified the substrate surface roughness, which will affect the roughness of the DLC films. However, the structure, hardness and residual stress of DLC films were not influenced by the plasma pre-treatment. For the DLC films deposited using different C2H2/Ar or C2H2/H2 ratios, it was found that as the C2H2/Ar or C2H2/H2 ratio was reduced, surface roughness, hardness and sp3/sp2 ratio decreased, and that the residual stress and the wear depth of the DLC films were also influenced by the C2H2/H2 ratio. For the Ar or H2 plasma post-treatment, surface roughness decreased with increasing treatment time. Hardness and the wear characteristics were also modified by the plasma post-treatment. However, the residual stress was independent of the Ar or H2 plasma post-treatment.
總目錄
中文摘要 I
英文摘要 II
總目錄 III
圖目錄 VII
表目錄 XII
第一章 緒論
1-1 前言 1
1-2 研究目地 1
第二章 文獻回顧
2-1 類鑽碳膜
2-1-1 碳材料 2
2-1-2 非晶質碳膜
2-1-2-1 類高分子碳膜 3
2-1-2-2 類石墨碳膜 3
2-1-2-3 類鑽碳膜 4
2-1-2-4 四面體碳膜 4
2-1-2-5 奈米複合非晶質碳膜 4
2-2 電漿前處理效應 7
2-3 碳膜沉積過程中摻雜氬氣之效應
2-3-1 氬氣電漿對碳膜沉積速率之影響 13
2-3-2 氬氣電漿對碳膜表面粗糙度之影響 16
2-3-3 氬氣電漿對碳膜硬度之影響 17
2-3-4 氬氣電漿對碳膜殘留應力之影響 18
2-4 碳膜沉積過程中摻雜氫氣效應
2-4-1 氫氣電漿對碳膜沉積速率之影響 20
2-4-2 氫氣電漿對碳膜結構之影響 21
2-4-3 氫氣電漿對碳膜硬度之影響 22
2-4-4 氫氣電漿對碳膜磨耗性質之影響 23
2-5 電漿後處理效應
2-5-1 電漿後處理對碳膜粗糙度及磨耗性質之影響 24
2-5-2 電漿後處理對碳膜結構之影響 26
第三章 實驗流程與分析儀器
3-1 實驗流程
3-1-1 粗糙度效應 28
3-1-2 前處理效應 29
3-1-3 氬氣與氫氣電漿效應 30
3-1-4 電漿後處理效應 31
3-2 實驗參數 31
3-3 射頻電漿輔助化學氣相沉積系統 33
3-4 儀器介紹與量測方法
3-4-1 膜厚分析 34
3-4-2 碳膜結構分析 35
3-4-3 表面粗糙度量測 35
3-4-4 硬度及楊氏模數量測 35
3-4-5 殘留應力量測 36
3-4-6 磨耗量測 36
第四章 結果與討論
4-1 基材及類鑽碳膜表面粗糙度效應
4-1-1 氬氣電漿轟擊時間對基材表面粗糙度之影響 38
4-1-2 不同壓力下之氬氣電漿轟擊對基材表面粗糙度之影響 38
4-1-3 不同氫氣電漿功率表面蝕刻對碳膜表面粗糙度之影響 38
4-1-4 不同沉積時間類鑽碳膜表面粗糙度之效應 39
4-2 基板粗糙度對碳膜粗糙度之影響 47
4-3 基板前處理對碳膜結構及機械性質之影響 50
4-4 沉積過程中氬氣與氫氣電漿效應
4-4-1 不同比例乙炔摻雜氫氣或氬氣電漿之碳膜沉積速率 54
4-4-2 不同比例乙炔摻雜氫氣或氬氣電漿之碳膜表面粗糙度 54
4-4-3 不同比例乙炔/氫氣或乙炔/氬氣電漿所沉積之碳膜結構 55
4-4-4 不同比例乙炔/氫氣或乙炔/氬氣電漿所沉積之碳膜硬度及模數 56
4-4-5 不同比例乙炔摻雜氫氣電漿之碳膜殘留應力 56
4-4-6 不同比例乙炔摻雜氫氣電漿之碳膜磨耗深度 57
4-5 後處理對類鑽碳膜之影響
4-5-1 類鑽碳膜經後處理之表面粗糙度 65
4-5-2 類鑽碳膜經後處理後之結構 66
4-5-3 類鑽碳膜經後處理後之硬度 66
4-5-4 類鑽碳膜經後處理後之磨耗深度 67
4-5-5 類鑽碳膜經後處理後之殘留應力 67
第五章 結論 80
參考文獻 82
圖目錄
圖2-1-1 sp1、sp2、sp3結構形貌 5
圖2-1-2 碳膜結構及氫含量之相平衡圖 6
圖2-1-3 各種碳氫氣體沉積類鑽碳膜之沉積速率 6
圖2-2-1 經不同時間前處理之碳膜量測拉曼計算之偶合係數 8
圖2-2-2 經不同時間前處理之碳膜附著情形 8
圖2-2-3 經不同時間氬原子轟擊之不�袗�基材FTIR圖譜 9
圖2-2-4 經不同時間前處理之碳膜殘留應力 9
圖2-2-5 經不同時間前處理之碳膜量測拉曼計算之偶合係數 10
圖2-2-6 經不同時間前處理之碳膜附著情形 10
圖2-2-7 基材經不同時間不同電漿前處理沉積鈦膜之附著強度 11
圖2-2-8 基材經不同功率不同電漿前處理沉積鈦膜之附著強度(轟擊300秒) 12
圖2-2-9 基材經不同功率不同電漿前處理沉積鈦膜之附著強度(轟擊600秒) 12
圖2-3-1 不同乙炔及氬氣比例在不同偏壓下沉積碳膜之沉積速率 14
圖2-3-2 不同沉積壓力下沉積碳膜之沉積速率 15
圖2-3-3 不同乙炔及氬氣比例下沉積碳膜之沉積速率 15
圖2-3-4 甲烷摻雜不同比例惰性氣體對類鑽碳膜表面粗糙度之影響 16
圖2-3-4 不同甲烷及氬氣比例沉積碳膜之傅利葉轉換光譜 17
圖2-3-5 不同甲烷及氬氣比例沉積碳膜之羅普硬度 18
圖2-3-6 不同氬氣含量沉積碳膜之殘留應力及碳膜表面之碳/氬原子比 19
圖2-4-1 不同氫含量對碳膜沉積速率之影響 20
圖2-4-2 不同氫含量對碳膜硬度之影響 22
圖2-4-3 沉積過程中氫氣摻雜對碳膜磨擦係數及磨耗速率之影響 23
圖2-5-1 經氬氣電漿後處理之碳膜以不同時間轟擊之表面粗糙度 25
圖2-5-2 經氧氣電漿後處理之碳膜以不同時間蝕刻後之磨擦係數 25
圖2-5-3 以濺鍍法沉積類鑽碳膜之X光光電子能譜分析圖:
(a)未經離子轟擊 (b)經3keV氬離子轟擊 26
圖2-5-4 以陰極電弧法沉積類鑽碳膜之X光光電子能譜分析圖:
(a)未離子轟擊 (b)經3keV氬離子轟擊 27
圖3-1-1 粗糙度效應實驗流程 28
圖3-1-2 電漿前處理效應實驗流程圖 29
圖3-1-3 氬氣與氫氣電漿效應實驗流程圖 30
圖3-1-4 電漿後處理實驗流程圖 31
圖3-3-1 射頻電漿輔助化學氣相沈積系統簡圖 34
圖3-4-1 邁克森光學干涉儀簡圖 37
圖3-4-2 磨耗時試片表面情形 37
圖4-1-1 矽基板表面經不同時間氬氣電漿轟擊後表面粗糙度變化圖 41
圖4-1-2 矽基板表面經不同時間氬氣電漿轟擊後之表面形貌:
(a)0min (b)2min (c)5min (d)10min 41
圖4-1-3 在不同壓力下氬氣前處理之矽基板表面粗糙度變化圖 42
圖4-1-4 在不同壓力下氬氣前處理之矽基板表面形貌:
(a)矽基板 (b)015torr (c)03torr (d)1torr 42
圖4-1-5 經不同氫氣電漿功率前處理之矽基板表面粗糙度變化圖 43
圖4-1-6 經不同氫氣電漿功率前處理之矽基板表面形貌:
(a)矽基板 (b)20W (c)40W (d)60W (e)80W 44
圖4-1-7 以甲烷電漿於不同鍍膜時間沉積類鑽碳膜粗糙度比較圖 45
圖4-1-8 以甲烷電漿於不同鍍膜時間沉積類鑽碳膜表面形貌:
(a)0min (b)1min (c)3min (d)5min (e)10min 46
圖4-2-1 不同壓力氬氣前處理之矽基板鍍膜前後粗糙度變化圖 47
圖4-2-2 不同壓力氬氣前處理後沉積類鑽碳膜之表面形貌:
(a)矽基板 (b)015torr (c)03torr (d)1torr D/IG比值 48
圖4-2-3 不同氫氣電漿功率前處理之矽基板鍍膜前後粗糙度變化圖 48
圖4-2-4 經不同氫氣電漿功率前處理後沉積類鑽碳膜之表面形貌:
(a)矽基板 (b)20W (c)40W (d)60W (e)80W 49
圖4-3-1 矽基板以不同功率氫氣電漿前處理後沉積類鑽碳膜之沉積速率變化圖 51
圖4-3-2 矽基板以不同功率氫氣電漿前處理後沉積類鑽碳膜之拉曼
G特性峰變化圖 51
圖4-3-3 矽基板以不同功率氫氣電漿前處理後沉積類鑽碳膜之拉曼ID/IG變化圖 52
圖4-3-4 矽基板以不同功率氫氣電漿前處理後沉積類鑽碳膜之硬度變化圖 52
圖4-3-5 矽基板以不同功率氫氣電漿前處理後沉積類鑽碳膜之殘留應力變化圖 53
圖4-4-1 乙炔摻雜氫氣或氬氣電漿沉積類鑽碳膜沉積速率變化圖 57
圖4-4-2 不同比例乙炔/氫氣或乙炔/氬氣電漿沉積碳膜之表面粗糙度變化圖 58
圖4-4-3 不同比例乙炔/氬氣電漿沉積碳膜之表面形貌:
(a)10/0 (b)9/1 (c)8/2 (d)7/3 58
圖4-4-4 不同比例乙炔/氫氣電漿沉積碳膜之表面形貌:
(a)10/0 (b)9/1 (c)8/2 (d)5/5 (e)3/7 59
圖4-4-5 不同比例之含氫或氬氣之乙炔電漿於矽基板上沉積類鑽碳膜之
拉曼G特性峰位置 60
圖4-4-6 不同比例之含氫或氬氣之乙炔電漿於矽基板上沉積類鑽碳膜之ID/IG值 60
圖4-4-7 不同比例乙炔/氫氣或乙炔/氬氣電漿沉積類鑽碳膜之表面硬度 61
圖4-4-8 不同比例乙炔/氫氣或乙炔/氬氣電漿沉積類鑽碳膜之楊氏模數 61
圖4-4-9 不同比例之含氫之乙炔電漿沉積類鑽碳膜之殘留應力圖 62
圖4-4-10 不同比例之含氫乙炔電漿沉積類鑽碳膜經磨耗實驗後之碳膜2D表面
形貌及剖面圖。乙炔/氫氣流量比為(a)10:0(b)9:1(c)8:2(d)5:5(e)3:7 63
圖4-4-11 不同比例之含氫乙炔電漿沉積類鑽碳膜經之碳膜磨耗深度 64
圖4-5-1 氬氣及氫氣電漿後處理時間與碳膜表面粗糙度變化圖 69
圖4-5-2 不同氬氣電漿後處理時間之碳膜表面形貌:
(a)未處理 (b)1min (c)5min (d)10min 69
圖4-5-3 不同氫氣電漿後處理時間之碳膜表面形貌:
(a)未處理 (b)1min (c)3min (d)5min (e)10min (f)20min 70
圖4-5-4 經不同比例之氫氣及氬氣電漿後處理後之碳膜表面粗糙度變化圖 71
圖4-5-5 氫氣/氬氣混合電漿後處理後之碳膜表面形貌:
(a)純氫氣 (b)8/2 (c)5/5 (d)2/8 (e)純氬氣 72
圖4-5-6 氫氣及氬氣電漿於碳膜表面蝕刻示意圖 73
圖4-5-7 經不同氫氣和氬氣電漿後處理時間之碳膜G特性峰位 73
圖4-5-8 經不同氫氣和氬氣電漿後處理時間之碳膜ID/IG值 74
圖4-5-9 經不同比例之氫氣及氬氣電漿後處理後之碳膜G特性峰位置 74
圖4-5-10 經不同比例之氫氣及氬氣電漿後處理後之碳膜ID/IG值 75
圖4-5-11 類鑽碳膜經不同時間電漿後處理之表面硬度 75
圖4-5-12 經不同比例之氫氣氬氣電漿後處理之碳膜表面硬度 76
圖4-5-13 類鑽碳膜經不同時間電漿後處理之磨耗深度 76
圖4-5-14 類鑽碳膜經氫氣電漿後處理之不同深度硬度 77
圖4-5-15 類鑽碳膜經氬氣電漿後處理之不同深度硬度 77
圖4-5-16 類鑽碳膜經不同時間氫氣電漿後處理之碳膜殘留應力 78
圖4-5-17 類鑽碳膜經不同時間氬氣電漿後處理之碳膜殘留應力 78
圖4-5-18 經不同比例之氫氣氬氣電漿後處理之碳膜殘留應力 79
表目錄
表1-1 各種非晶質碳膜之基本性質 5
表3-1 實驗參數 32
[1] Enke K.Hard carbon layers for wear protection and antireflection purposes of infrared devices. Applied optics 1985;24:508-12.
[2] Robertson J. Improving the properties of diamond-like carbon. Diamond and Related Materials 2003;12:79-84.
[3] Robertson J. Requirements of ultrathin carbon coatings for magnetic storage technology. Tribology International 2003;36:405-15.
[4] Lee KY, Fujimoto K, Ohkura S, Honda S, Katayama M, Hirao T. Study of electron field emission and structural properties of nanostructured carbon thin films deposited by hot-filament-assisted reactive sputtering using methane gas. Vacuum 2002;66:239-43.
[5] Ma WJ, Ruys AJ, Mason RS, Martin PJ, Bendavid A, Liu Z, Ionescu M, Zreiqat H. DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials 2007;28:1620-8.
[6] Dearnaley G, Arps JH. Biomedical applications of diamond-like carbon (DLC) coatings : A review. Surface and Coatings Technology 2005;200:2518-24.
[7] Nalwa HS. Handbook of thin film materials. 2002;9:404-19.
[8] Whittaker AG. Carbon: A New View of Its High-Temperature Behavior. Science 1978;200:763-4.
[9] Smith PPK, Buseck PR. Carbyne Forms of Carbon: Do They Exist. Science 1982;216:984-6.
[10] Silva SRP, Properties of Amorphous Carbon. 2002.
[11] Barklie RC. Characterisation of defects in amorphous carbon by electron paramagnetic resonance. Diamond and Related Materials 2001;10:174-81.
[12] Khan RUA, Silva SRP. Switching phenomena in boron-implanted amorphous carbon films. Diamond and Related Materials 2001;10:1036-9.
[13] Khan RUA, Carey JD, Silva SRP. Electron delocalization in amorphous carbon by ion implantation. Physical Review;B 63:121201-(1-4).
[14] Anguita JV, Silva SRP, Young W. Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films. Journal of Applied Physics 2000;88:5175-9.
[15] Schwan J, Ulrich S, Theel T, Roth H, Ehrhardt H, Becker P, Silva SRP. Stress-induced formation of high-density amorphous carbon thin films. J. Appl. Phys. 1997;82:6024-30.
[16] Aisenberg S, Chabot R. Ion-beam deposition of thin films of diamondlike carbon. Journal of Applied Physics 1971;42:2953-8.
[17] Holland L, Ojha SM. Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma. Thin Solid Films 1976;38:L17-9.
[18] McKenzie DR, Muller D, Pailthorpe BA. Compressive-Stress-Induced Formation of Thin-Film Tetrahedral Amorphous Carbon. Physical Review Letters 1991;67:773-6.
[19] Kaukonen HP, Nieminen RM. Molecular-Dynamics Simulation of the Growth of Diamondlike Films by Energetic Carbon-Atom Beams. Physical Review Letters 1992;68:620-4.
[20] Schwan J, Ulrich S, Roth H, Ehrhardt H, Silva SRP, Robertson J, Samlenski R, Brenn R. Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 1996;79:1416-22.
[21] Voevodin AA, Donley MS. Review Preparation of amorphous diamond-like carbon by pulsed laser deposition:acritical review. Surface and Coatings Technology 1996;82:199-213.
[22] Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering 2002;R37:129-281.
[23] Morshed MM, Mcnamara BP, Cameron DC, Hashmi MSJ. Effect of surface treatment on the adhesion of DLC film on 316L stainless steel. Surface and Coatings Technology 2003;163-4:541-5.
[24] Morshed MM, Cameron DC, McNamara BP, Hashmi MSJ. Pre-treatment of substrates for improved adhesion of diamond-like carbon films on surgically implantable metals deposited by saddle field neutral. Surface and Coatings Technology 2003;174-5:579–83.
[25] Fruth W, Meerkamm H, Krumpiegl T, Schaufler C, Erkens G, Ruttor M. Tribological behaviour of PVD-coated PA plastic material sliding against metal counterparts. Surface and Coatings Technology 1999;120–1:470–5.
[26] Cheng YH, Wu YP, Chen JG, Qiao XL, Xie CS, Tay BK, Lau SP, Shi X. On the deposition mechanism of a-C:H films by plasma enhanced chemical vapor deposition. Surface and Coatings Technology 2000;135:27-33.
[27] Lifhsitz Y, Kasi SR, Rabalais JW. Subplantation model for film growth from hyperthermal species. Physical Review 1990;B 41:10468-80.
[28] Sun Z, Lin CH, Lee YL, Shi JR, Tay BK, Shi X. Properties and structures of diamond-like carbon film deposited using He, Ne, Ar/methane mixture by plasma enhanced chemical vapor deposition. Journal of Applied Physics 2000;87:8122-31.
[29] Mutsukura N, Yoshida K. Deposition of DLC films in CH4/Ar and CH4/Xe r.f. plasmas. Diamond and Related Materials 1996;5:919-22.
[30] Teii K. Structure changes in a-C:H films in inductive CH4/Ar plasma deposition. Thin Solid Films 1998;333:103-7.
[31] Raveh A, Martinu L, Gujrathi SC, Klemberg-Sapieha JE, Wertheimer MR. Structure-property relationships in dual-frequency plasma deposited hard a-C: H films. Surface and Coatings Technology 1992;53:275-82.
[32] Grigonis A, Sablinskas V, Silinskas M, Tribandis D. The role of hydrogen in a-C:H films deposited from hexane or acetylene using direct ion beam deposition method. Vacuum 2004;75:261-7.
[33] Angus JC, Jansen F. Dense diamondlike hydrocarbons as random covalent networks. J. Vac. Sci. Technol. 1988;A 6:1778-82.
[34] Xu GC, Hibino Y, Kurotobi K, Suzuki Y, Iwaki M. Hydrogen contents and related properties of a-C:H formed with unbalanced magnetron sputtering. Nuclear Instruments and Methods in Physics Research 2003;B 206:330-3.
[35] Erdemir A, Eryilmaz OL, Nilufer IB, Fenske GR. Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diamond and Related Materials 2000;9:632-7.
[36] Peng XL, Barber ZH, Clyne TW. Surface roughness of diamond-like carbon films prepared using various techniques. Surface and Coatings Technology 2001;138:23-32.
[37] Trakhtenberg ISH, Plotnikov SA, Vykhodets VB, Pavlov VA, Raspopova GA. Modification of amorphous diamond-like films by bombardment with low-energy ions. Diamond and Related Materials 1996;5:943-6.
[38] Jackson ST, Nuzzo RG. Determining hybridization differences for amorphous carbon from the XPS C1s envelope. Applied Surface Science 1995;90:195-203.
[39] 陳元方,光機電系統整合概論.國家實驗研究院儀器科技研究中心 民94;8.3.3:459-63.
[40] Tomasella E, Meunier C, Mikhailov S. a-C:H thin films deposited by radio-frequency plasma:influence of gas composition on structure, optical properties and stress levels. Surface and Coatings Technology 2001;141:286-96.
[41] Niwano M. In-situ IR observation of etching and oxidation. Surface Science 1999;427-8:199-207.
[42] Salvadori MC, Martins DR, Cattani M. DLC coating roughness as a function of film thickness. Surface and Coatings Technology 2006;200:5119-22.
[43] Jiang J, Arnell RD. The effect of substrate surface roughness on the wear of DLC coatings. Wear 2000;239:1-9.
[44] Maharizi M, Segal O, Ben-Jacob E, Rosenwaks Y, Meoded T, Croitoru N, Seidman A. Physical properties of a:DLC films and their dependence on parameters of deposition and type of substrate. Diamond and Related Materials 1999;8:1050-6.
[45] Vladimirov AB, Trakhtenberg IS, Rubshtein AP, Plotnikov SA, Bakunin OM, Korshunov LG, Kuzmina EV. The effect of substrate and DLC morphology on the tribological properties coating. Diamond and Related Materials 2000;9:838-42.
[46] Zhang S, Xie H. Improving the adhesion of amorphous carbon coatings on cemented carbide through plasma cleaning. Surface and Coatings Technology 1999;113:120-5.
[47] West GT, Kelly PJ. Improved properties of optical coatings through substrate pre-treatment. Thin Solid Films 2006;502:55-8.
[48] Paterson MJ. An investigation of the role of hydrogen in ion beam deposited a-C:H. Diamond and Related Materials. Diamond and Related Materials 1998;7:908-15.
[49] Yamauchi N, Okamoto A, Tukahara H, Demizu K, Ueda N, Sone T, Hirose Y. Friction and wear of DLC films on 304 austenitic stainless steel in corrosive solutions. Surface and Coatings Technology 2003;174-5:465-469.
[50] Keudell AV, Schwarz-Sellinger T, Jacob W. Quantification of a radical beam source for methyl radicals. J. Vac. Sci. Technol. 2001;A 19:101-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊