[1] Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P., “Automatic Subspace
Clustering of High Dimensional Data for Data Mining Applications.” Proc. of
the ACM SIGMOD Conference on Management of Data, pp. 94-104, 1998.
[2] Al-Sultan, K. S., “A tabu search approach to the clustering problem.” Pattern
Recognition 28 (1995) 1443-1451.
[3] Bandyopadhyay, S.,“Genetic clustering for automatic evolution of clusters and
application to image classification,” pattern recognition,35, pp. 1197-1208, 2002
[4] Chandrasekharan, M. P., and Rajagopalan, R., “An ideal seed non-hierarchical
clustering algorithm for cellular manufacturing.” International Journal of
Production Research, Vol. 24, pp. 451-464, 1986.
[5] Delgado, M.,“A tabu search approach to the fuzzy clustering problem.” CICYT
project TIC95-1019,IEEE 1997.
[6] Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C. and
Chretien, L., “The dynamics of collective sorting robot-like ants and ant-like
robots.” Proc. Of the 1st Conf. on Sim. of Adaptive Behavior, pp. 356-363, 1991.
[7] Dorigo, M., and Gambardella, L. M., “Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem.” IEEE Transactions on Evolutionary Computation, Vol.1, No.1, pp.53-66, 1997.
[8] Dorigo, M., Maniezzo, V., and Colorni, A., “The ant system: optimization by a
colony of cooperating agents.” IEEE Transactions on Systems, Man, and Cybernetics--Part B , Vol. 26, No. 2, pp. 29-41, 1996.
[9] Dorigo, M., Stützle, T., “Ant Colony Optimization.” Cambridge, MA:
MIT Press, 2004.
[10] Glover, F., “Tabu Search, part i.” ORSA Journal Of Computing, vol 1, no.3
pp. 190-206, 1989.
[11] Goldberg, D.E., “Genetic Algorithm in Search.” Optimization and Machine
Learning, Addision-Wesley, New York, 1989
[12] Han, J. and Kamber, M., “Data mining: Concepts and Techniques.” San
Francisco: Morgan Kaufmann Publisher, 2001.
[13] Xu, H., “Fuzzy tabu search method for the clustering problem.”
Proceedings of the first international conference on machine learning and cybernetics, Beijing, IEEE 2002,
[14] Kao Y. and Cheng K., ”An ACO-Based Clustering Algorithm.” ANTS
2006, LNCS 4150 ,pp.340-347, 2006
[15] Lumer, E. and Faieta, B., “Diversity and adaptation in populations of clustering
ants.” Proc. Of the 3rd International Conference on Simulation of Adaptive Behavior:From Animals to Animats. Eds.: Cliff et al., Cambridge, MA: MIT Press, pp. 501-508, 1994.
[16] Davis, L., “Handbook of Genetic Algorithm.” Van Nostrand Reinhold,
New York, 1991
[17] Maulik, U. amd Bandyopadhyay, S., “Genetic algorithm-based clustering
technique.” Pattern Recognition Vol. 33, pp.1455-1465, 2000
[18] Martin, E. Kriegel, H. Sander, J. and Xu, X., “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.” Proc. of KDD96:
pp. 226-231, 1996.
[19] Saha, S. Bandyopadhyay, S.,“A fuzzy genetic clustering technique using a new
symmetry based distance for automatic evolution of clusters.” Theory and
Application ICCTA’07, International Conference
[20] Sheikholeslami, G., Chatterjee, S., and Zhang, A., “WaveCluster: A Multiresolution
Clustering Approach for Very Large Spatial Databases.” Proc. On the 24th VLDB Conference, pp. 428-439, Aug 1998.
[21] Shelokar, P. S., Jayaraman, V. K. and Kulkarni, B. D., “An ant colony
approach for clustering.” Analytica Chimica Acta Vol. 509, No.2, pp. 187-195, 2004.
[22] Tseng, L.Y., ”Genetic algorithm for clustering, feature selection and
Classification.” 1997 IEEE International Conference on Neural
Networks,vol, 3, pp. 1612-1616 1997
[23] UCI Repository of Machine Learning Databases, from website:
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
[24] Wang, W., Yang, J. and Muntz, R., “STING: A Statistical Information Grid
Approach to Spatial Data Mining.” Proc. of the 23th VLDB Conference, pp. 186-195, 1997.
[25] Welch, W.J., “Algorithmic complexity: Three NP-hard problems in computationalstatistics.” J.Statist. Comput. Simulation, Vol. 15, pp.17–25, 1982.
.
中文參考文獻
[26] 丁淯淨,改良式螞蟻分群演算法,大同大學資訊經營,研究所碩士論文,2006。