(3.238.186.43) 您好!臺灣時間:2021/02/28 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉文進
研究生(外文):Wun-Jin Yeh
論文名稱:電化學沉積二硒化銅銦鎵薄膜研究
論文名稱(外文):A Study of Cu(InGa)Se2 Thin Film by Electrodeposition
指導教授:葉翳民
指導教授(外文):Yih-Min Yeh
學位類別:碩士
校院名稱:吳鳳技術學院
系所名稱:光機電暨材料研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:電沉積二硒化銅銦鎵化學計量比
外文關鍵詞:ElectrodepositionCIGSStoichiometry
相關次數:
  • 被引用被引用:4
  • 點閱點閱:654
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:202
  • 收藏至我的研究室書目清單書目收藏:0
薄膜太陽能電池由於其在成本上的優勢,包括材料的節省、製程簡化與模組輕量化等特點,相對於傳統矽晶塊材太陽能電池具有較大的潛能成為下一代太陽能電池的主流。
本研究是利用電沉積(Electrodeposition)方式,在ITO玻璃上共沉積理想化學計量比二硒化銅銦鎵(CuIn1-xGaxSe2)薄膜。透過X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)及UV光譜儀,對製備的薄膜進行晶體結構、表面形貌、薄膜厚度、組成成分和光學特性進行分析。
由實驗結果顯示,pH值與沉積電位對薄膜組成變化扮演重要角色。藉由電化學共沉積方式可成功生長具Cu(In1-xGax)Se2四元化合物相,且具近理想化學計量比組成(Cu:In:Ga:Se=1:0.7:0.3:2)之CuIn0.7Ga0.3Se2薄膜。電沉積的CIGS薄膜呈現p-type形式且具有黃銅礦結構,退火熱處理後可使薄膜結晶度提升,並且使CIGS(112)優選沉積方位更加明顯,本實驗在ITO基底上電沉積CIGS薄膜其能隙約為1.16eV。
Due to the advantage of the cost in producing the thin film solar cells, including the economy of the material, the simplicity of the process, and very light of module, the thin film solar cells has, comparing to the traditional silicon bulk solar cells, a greater potential to become the mainstream of the solar cells in the coming generation.
This study uses the electrodeposition method through which the CIGS film of a stoichiometric ratio is co-electrodeposited on an ITO glass. The film’s crystal structure, surface appearance, and composition are analyzed by an X-ray diffractometer (XRD), scanning electronic microscope (SEM), and energy diffraction spectrometer(EDS).
The experimental results indicate that the pH value and deposition’s electric potential play an important role in the changed composition of the CIGS film. Furthermore, the electrodeposited CIGS film has a pyrite structure. After annealing, the film’s crystallinity is improved, and CIGS(112) shows apparent prioritized deposition orientation. In this experiment, the energy gap of the CIGS film electrodeposited on an ITO substrate is about 1.16eV.
摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅷ
表目錄 XII

第一章 緒論 01
1-1 前言 01
1-2 太陽能電池簡介 02
1-3 Ⅰ-Ⅲ-Ⅵ族半導體 07
1-3-1 二硒化銅銦CuInSe2 07
1-3-2 二硒化銅銦鎵Cu(In1-xGax)Se2 09
1-3-3 CI(G)S薄膜太陽電池結構及操作原理 09
1-4 CI(G)S太陽能電池結構簡介 12
1-4-1 鈉玻璃(Soda-lime)基板 12
1-4-2 鉬金屬(Mo)背部電極 12
1-4-3 CI(G)S吸收層 13
1-4-4 CdS緩衝層 13
1-4-5 i-ZnO純質氧化鋅層以及ZnO:Al頂層電極 14
1-5 製備CI(G)S薄膜方法 15
1-5-1 CIS薄膜常見製備方式 15
1-5-2 CIGS薄膜的製備方式 19
1-6 研究動機 20
第二章 文獻回顧與原理介紹 22
2-1 太陽電池原理 22
2-1-1 太陽電池 22
2-1-2 太陽光譜 22
2-2 電沉積原理 31
2-3 CuInSe2電化學沉積法文獻回顧 34
2-3-1 CuInSe2一階段製程法(One Step Process) 34
2-3-2 CuInSe2二階段製程法(Two Step Process) 36
2-4 Cu(In1-xGax)Se2電化學沉積法文獻回顧 38
2-5 儀器原理介紹 41
2-5-1 X光繞射儀(X-ray Diffractometry, XRD) 41
2-5-2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) 42
2-5-3 能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 44
2-5-4 UV-VIS光譜儀(UV-VIS spectrophotometer) 45
2-5-5原子力顯微鏡(Atomic Force Microscope, AFM) 46
第三章 實驗流程 48
3-1 實驗流程圖 48
3-2 電沉積薄膜 49
3-2-1 ITO玻璃切割 49
3-2-2 ITO玻璃前處理 50
3-2-3 實驗參數設定 52
3-2-4 化學藥品和電極的介紹 53
3-2-5 儀器設備介紹 55
3-2-6 實驗步驟 56
第四章 結果與討論 58
4-1 沉積電位對於薄膜組成之影響 59
4-2 電沉積溶液酸鹼值對於薄膜組成之影響 64
4-3 電沉積溶液離子濃度對於薄膜組成之影響 66
4-4 其他沉積參數對於薄膜組成之影響 68
4-4-1 沉積過程攪拌鍍液 68
4-4-2 沉積溫度 70
4-5 晶格結構分析 72
4-5-1 Cu(In0.7Ga0.3)Se2薄膜X-ray繞射分析 73
4-5-2 退火熱處理 75
4-6 影響薄膜表面形貌因素探討 79
4-7 沉積時間對薄膜厚度之影響 86
4-8 光學性質分析 88
第五章 結論 90
參考文獻 92
自傳 97
[1]葉惠青, 能源政策與能源結構發展方向, 94年6月.
[2]莊嘉琛, 太陽能工程-太陽電池篇, 全華科技圖書, 92年3月.
[3]L. Thouin, S. and J. ElctroChem. Soc, 142, 2996(1995).
[4]R. N. Bhattacharya and J. Keane, J. Electrochem. Soc,143,854 (1984).
[5]R. N. Bhattacharya, P. J. Sebastian and X. Mathew, Solar Energy Materials and Solar Cells, 63, 316(2000).
[6]P. J. Sebastian, E. Calixto and A. Fernandez, J. of Crystal Growth, 169, 287(1996).
[7]R. Friedfeld, R. P. Raffaelle, J. G. Mantovani, Electrodeposition of CuInxGa1-xSe2 thin films, Solar Energy Materials & Solar Cells, 58, pp.375-385(1999).
[8]J. Herrero, Thin Solid Films, 387, 57(2001).
[9]P. K. Vidyadharan and K. P. Vijayakumar, Solar Energy Materials and Solar Cells, 51, 48(1998).
[10]M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A. Gamboa, R. N. Noufi, Cu(In,Ga)Se2 based photovoltaic structure by electrodeposition and processing, Solar Energy Materials and Solar Cells, 55, pp.23-29(1998).
[11]Miguel A. Contreras, Kannan Ramanathan, Jehad A. M. AbuShama, F. Hasoon, David L. Young, B. Egaas and Rommel Noufi, Prog. Photovolt, 13, pp.209-216(2005).
[12]陳宗隴, 影響硒化銅銦鎵太陽能電池表現之元件特性, 國立東華大學
電機工程學系,(2006).
[13]http://www.nrel.gov/
[14]Rockett A., Granath K., Asher S., Al Jassim M.M., Hasoon F., Matson R., Basol B., Kapur V., Britt J.S., Gillespie T., Marshall C., Na incorporation in Mo and CuInSe2 from production processes. Solar energy materials and solar cells, 59, pp. 255-264(1990).
[15]Kimura, R., T. Nakada, and P. Fons, Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films. Solar energy materials and solar cells, 67, pp.289-295(2001).
[16]D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin solid films, 361-362, pp.161-166(2000).
[17]M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H. W.Schock, Influence of Substrates on the Electrical Properties of Cu(In,Ga)Se2 Thin Films. 1st World Conference on Photovoltaic Energy Conversion, pp.156-159(1994).
[18]T.J. Vink, M.A.J. Somers, J.L.C. Daams, A.G. Dirks, Stress, strain, and microstructure of sputter-deposited Mo thin films. journal of applied physics, 70, 4301-4308(1991).
[19]M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner, and Ch.-H.Fischer, T.P.Niesen, F.Karg, J. Appl. Phys., 7, 3858 (2004).
[20]W. Shockley, H. J. Queisser, J. Appl. Phys., 32, 510 (1961).
[21]A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug, M.Kalin, D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl. 12, 97 (2004).
[22]Schaffler, R. and H.W. Schock, High mobility ZnO:Al thin films grown by reactive DC magnetron sputtering.
[23]R. A. Mickelsen and M. S. Chen, Appl. Phys. Lett., 26, 5(1980).
[24]S. P. Grindle, A. H. Clark, S. Rezaie-Serej, J. Mcneily, L. L. Mcneily:Journal of Applied Physics, 51, 10(1980).
[25]N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, Growth of Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering. Solar Cells, 16, pp.155-164(1986).
[26]B. Pamplin and R. S. Feigelson, Thin Solid Films, 60, 144(1979).
[27]D. Pottier and G. Maurin, J. Appl. Electrochem., 19,361(1989).
[28]R. K. Pandey, S. N. Sahu and S. Chandra, Handbook of Semiconductor Electrodeposition, Marcel Dekker, Inc., New York, pp. 247(1996).
[29]尤如瑾, 薄膜型太陽電池-發展現況與未來的挑戰和契機, 工業技術與資訊, 178期, pp.13-17, 95年8月.
[30]陳宏仁, 有機太陽能電池之發展現況, 工業材料雜誌, 192期, pp.102-113.
[31]李寶珠譯, 太陽能概論, 科技圖書股份有限公司.
[32]楊仕廉, 抗反射膜結構設計對InGaP/GaAs/Ge多接面太陽電池特性之探討, 吳鳳技術學院光機電暨材料研究所,(2006).
[33]Jeffery L. Gray, Handbook of photovoltaic since and Enginerring A Luque and S. Hegedus, John Wiley &Sons, chap 3(2003).
[34]S. M. Sze, Semiconductor Devices Physics and Technology ,2nd ed, John
Wiley & Sons New York, chap.9.5.2(2002).
[35]蔡進譯, 高效率太陽電池-從愛因斯坦的光電效應談起, 物理, 雙月刊, 二七卷, 五期, 2005年10月.
[36]R. N. Bhattacharya, J. Electrochem. Soc., 130, 2040(1984).
[37]R. Ugarte, R. Schrebler and R. Cordova, Thin Solid Films, 340, 117(1999).
[38]C. Guillen and J. Herrero,J. Electrochem.Soc, 141, 225(1994).
[39]L. Thouin, S. Massaccesi and S. Sanchez,. Elctroanal. Chem, 374, 82(1983).
[40]L. Thouin, S. and J. ElctroChem.Soc, 142, 2996(1995).
[41]C. Guillen and J. Herrero, Thin Solid Films, 387, 58(2001).
[42]G. Hodes, T. Engelhard, C.A. Herrington, L. Kazmerski and D. Cahen, In Progress in Crystal Growth and Characterisation (Proc. 6th Int. Conf. Ternary and Multinary Compounds), Vol.10, B. Pamplin, N.V. Joshi, and R. Schwab, Eds., Pergamon, Oxford, New York, pp.345(1984).
[43]G. Hodes, T. Engelhard, and D. Cahen, Thin Solid Films, 128, 93(1985).
[44]R. N. Bhattacharya, D. Cahen, and G. Hodes, Solar Energy Materials, 10, 41(1984).
[45]S. R. Kumar, R. B. Gore, and R. K. Pandey, Semicond. Sci. TEchnol, 6 940(1991), Solar Energy Materials and Solar Cells, 26, 149(1992).
[46]S. R. Kumar, R. B. Gore, and R. K. Pandey, Thin Solid Films, 223, 109(1993).
[47]K. S. Balakrishnan and K. Jain, Thin Solid Films, 357,179(1999).
[48]H. M. Pathan, C. D. Lokhande, Chemical deposition and characterizationof copper indium diselenide (CISe) thin films, Applied Surface Science,245, pp.328-334(2005).
[49]M. E. Calixto, P. J. Sebastian, R. N. Bhattacharya, Rommel Noufi, Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition, Solar Energy Materials & Solar Cells, 59, pp.75-84(1999).
[50]A. M. Fernandez, R. N. Bhattacharya, Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology, Thin Solid Films, 474, pp.10-13(2005).
[51]許樹恩和吳泰伯, X光繞射原理與材料結構分析, 中國材料學會,新竹, pp.169(1996).
[52]陳力俊等著, 材料電子顯微鏡學, 國科會精儀中心, 新竹, pp.293(1997).
[53]余和興編著, 光電子學, 中央圖書館出版社, pp.34(1985).
[54]張義峰譯, 太陽電池之應用, 徐氏基金會 (1980).
[55]C. J. Huang, T. H. Meen, M. Y. Lai, W. R. Chen. Solar Energy Materials & Solar Cells, 82, pp. 553-565(2004).
[56]林其宏, 二硒化銅銦薄膜之電沉積研究, 國立成功大學化學研究所, (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔