跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭竹芸
研究生(外文):Kuo Chu-Yun
論文名稱:探討DDX3在mRNA出核過程中所扮演的角色
論文名稱(外文):Study on the role of DDX3 in mRNA export
指導教授:吳妍華
指導教授(外文):Yan-Hwa Wu Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:英文
論文頁數:57
中文關鍵詞:RNA解旋酶mRNA出核
外文關鍵詞:DDX3RNA helicasemRNA export
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
DDX3屬於DEAD box RNA 解旋酶的一員。DEAD box蛋白在RNA processing過程中,從上游的轉錄、pre-mRNA剪輯、mRNA出核,到下游的轉譯以及mRNA的降解 (degradation),均扮演重要角色。在本實驗室先前的研究結果顯示DDX3可調控p21waf1/cif1基因啟動子的活化,並且也發現DDX3會與一些mRNA剪輯因子有交互作用。同時當DDX3存在細胞質中時,會與轉譯起始因子eIF4E作用,抑制cap-dependent的蛋白起始轉譯,顯示出DDX3是一個多功能的RNA解旋酶。此外,在Yedavalli等人的研究中,發現DDX3可分別與CRM1 (export receptor)及Rev (adaptor)蛋白有交互作用,並參與在HIV 的Rev-CRM1蛋白複合物將其未剪輯或部分剪輯的轉錄片段送出核的過程中。基於上述之研究報告,本論文欲探討DDX3在運送細胞的mRNA出核過程中所扮演的角色。
已知在CRM1-dependent mRNA export路徑中,HuR扮演adaptor蛋白,負責運送富含AU序列的mRNAs出核,因此,首先想確認DDX3是否存在於含有HuR-CRM1的mRNP中。藉由活體內共同免疫沉澱的方式,證實DDX3會與HuR交互作用,同時在heat shock處理後,此交互作用會顯著增加。而在免疫螢光染色的實驗中,同樣也可觀察到heat shock處理後,DDX3會與HuR共同座落在特殊的細胞質foci中。因此,欲進一步檢視DDX3是否會和特定種類,例如富含AU序列的mRNAs結合。藉由免疫沉澱與Flag-tagged DDX3交互作用之mRNP複合體,抽取免疫沉澱物中的RNAs進行RT-PCR,發現DDX3蛋白在正常情況下,會與DDX3 mRNA結合,其中也包含DDX3內生性轉錄片段(endogenous transcripts)。然而在heat shock處理過後,DDX3會與一些已知的HuR ligands結合,如c-fos、c-myc以及p21 mRNAs,這些mRNAs的3’UTR皆富含AU序列。另一方面,在DDX3 knockdown的HeLa細胞中,利用mRNA螢光原位雜交的實驗,觀察CRM1-dependent mRNA c-fos的出核情形,發現DDX3 表現量下降對於c-fos mRNA在細胞核與細胞質中的分布並無顯著改變。
此外,本論文也對於細胞在遭受如heat shock的環境壓力時,DDX3在細胞質中聚集形成的foci做了進一步的探討。在共軛焦免疫螢光實驗中,觀察到DDX3在heat shock情況下,其形成的顆粒會與P body的標記蛋白DCP1a錯開,而會與stress granule的標記蛋白PABP共同座落於foci中。上述實驗證實DDX3是stress granule的組成蛋白之ㄧ。然而當DDX3 knockdown時,細胞中的stress granules仍可組裝,其完整性並不受影響,但其數量有下降的現象;同時,一般mRNAs及HuR的ligand c-fos mRNA仍可target 到stress granule。綜合以上的實驗結果,推測DDX3雖不是stress granule形成的必要因子,但仍有其重要的角色。因此,關於DDX3在stress granule中的生物功能,值得進一步的深入探討。
DDX3 belongs to the family of DEAD-box RNA helicase. DEAD box proteins play important roles in RNA processing ranging from transcription, pre-mRNA splicing, mRNA export to translation, and mRNA degradation. In our laboratory, studies of DDX3 have revealed that this protein can upregulate p21waf1/cip1 promoter. In addition, DDX3 was found to interact with pre-mRNA splicing factors. While present in the cytoplasm, DDX3 interacts with the translation initiation factor eIF4E that in turn inhibits the cap-dependent translation initiation. All these studies have indicated that DDX3 is a multifunctional RNA helicase. Recently, the study of Yedavalli et al. showed that DDX3 can directly interact with CRM1 (export receptor) or Rev (adaptor), and is involved in the HIV-1 Rev-CRM1 protein complex responsible for the nuclear export of unspliced and partially spliced viral transcripts. In view of these, this thesis focused on examining whether DDX3 plays a role in the export of cellular mRNAs.
In the CRM1-dependent mRNA export pathway, HuR serves as the adaptor protein which binds to the AU-rich mRNAs and escorts them to the cytoplasm. In this study, we investigated whether DDX3 involves in the HuR-CRM1-containing mRNP. The in vivo co-immunoprecipitation assay revealed that DDX3 interacts with HuR, and their interaction is greatly enhanced after heat shock treatment. Additionally, the confocal immunofluorescence experiment demonstrated that DDX3 and HuR colocalize to the specific cytoplasmic foci under heat shock condition. Furthermore, the possibility that DDX3 may associate with specific mRNA species, especially those AU-rich element (ARE)-containing transcripts were examined. By performing immunoprecipitation with Flag-tagged DDX3 and isolating the RNAs in the immunocomplex for the subsequent RT-PCR, it was found that under normal condition, DDX3 protein associates with its own mRNA, including the endogenous transcripts. However, after heat shock treatment, DDX3 was found to associate with some HuR ligands, such as c-fos, c-myc, and p21 mRNAs. All these mRNAs were bearing ARE in their 3’UTR. mRNA fluorescence in situ hybridization was also performed in DDX3 knockdown HeLa cells and the nuclear export of the CRM1-dependent mRNA c-fos was observed. However, the nuclear and cytoplasmic distribution for c-fos mRNA is not significantly affected upon knockdown of DDX3.
Furthermore, using confocal immunofluorescence analysis, we found that DDX3 proteins aggregate at some specific cytoplasmic foci in HeLa cells under heat shock condition. Interestingly, DDX3-formed foci are almost totally excluded from the P body marker DCP1a, but colocalizes with the stress granule marker PABP. This result suggested that DDX3 is one of the stress granule components. However, in DDX3 knockdown HeLa cells, the integrity of stress granule is not affected, although the number of stress granules appears decreasing. Moreover, both poly (A)+ mRNAs and HuR ligand c-fos mRNAs still target to stress granules. Therefore, it is suggested that DDX3, although not an essential factor, still plays an important role in stress granule. Therefore, to elucidate the biological role of DDX3 in stress granules, more extensive investigations are needed in the future.
Abstract (Chinese) 1
Abstract 3
Introduction 5
DEAD-box protein family of RNA helicase 5
DDX3 structure and biological functions 5
mRNA export pathway 6
CRM1-dependent mRNA export 8
General mRNA export 9
DEAD-box RNA helicases in mRNA export 10
Materials and Methods 13
Materials 13
Escherichia coli strain 13
Cell line 13
Plate and medium 13
Plasmids 14
Solutions 15
Chemicals 16
Enzymes 16
Primers and Oligonucleotide probes 16
Antibodies 17
Methods 18
Transformation 18
Plasmid purification 18
Cell culture and generation of DDX3 knockdown permanent cell line (mix population) 18
Transient transfection 18
Western blot 19
In vivo co-immunoprecipitation for Flag-DDX3 associated mRNPs and isolation of Flag-DDX3 associated mRNAs 19
RT-PCR 20
Confocal immunofluorescence 20
Fluorescence in situ hybridization (FISH) 21
Results 23
PartI Identify the adaptor protein associated with DDX3 23
PartII Identify the mRNA substrates associated with DDX3 25
PartIII Examine the role of DDX3 in mRNA export 27
PartIV Examine the cytoplasmic foci where DDX3 located
upon heat shock treatment 28
Discussion 32
The role of DDX3 in CRM1-dependent mRNA export 32
The relationship between DDX3 and the associated ddx3
mRNAs 35
The effects of heat shock on DDX3, HuR, and the associated mRNAs in stress granules 36
DDX3 is located in stress granule, but not P body 37
References 40
Tables and Figures 46
1. Rocak S, Linder P. (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol. 5, 232-241
2. Linder P. (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168-4180
3. Cordin O, Banroques J, Tanner NK, Linder P. (2006). The DEAD-box protein family of RNA helicases. Gene 367, 17-37
4. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YH. (1999). Hepatitis C virus core protein interacts with cellular putative RNA helicase. J virol. 73, 2841-2853
5. Park SH, Lee SG, Kim Y, Song K. (1998). Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11.3-->p11.23. Cytogenet Cell Genet. 81, 178-179
6. Owsianka AM, Patel AH. (1999). Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257, 330-340
7. Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. (2004). Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381-392
8. Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P. (2005). Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol. 277, 92-101
9. Kim YS, Lee SG, Park SH, Song K. (2001). Gene structure of the human DDX3 and chromosome mapping of its related sequences. Mol Cells. 12, 209-214
10. Mamiya N, Worman HJ. (1999). Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem. 274, 15751-15756
11. Chao CH, Chen CM, Cheng PL, Shih JW, Tsou AP, Lee YH. (2006). DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 66, 6579-6588
12. Zhou Z, Licklider LJ, Gygi SP, Reed R. (2002). Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182-185
13. Lin YY, Lee Wu YH. (2006). Study on the interaction between DDX3 and the splicing factors in the alternative splicing. Master thesis
14. Shih JW, Tsai TY, Lee YH. (2007). Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. (in press)
15. Merz C, Urlaub H, Will CL, Luhrmann R. (2007). Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13, 116-128
16. Aguilera A. (2005). Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol. 17, 242-250
17. Reed R, Cheng H. (2005). TREX, SR proteins and export of mRNA. Curr Opin Cell Biol. 17, 269-273
18. Rodriguez MS, Dargemont C, Stutz F. (2004). Nuclear export of RNA. Biol Cell. 96, 639-655
19. Cullen BR. (2003). Nuclear RNA export. J Cell Sci. 116, 587-597
20. Moore MJ, Rosbash M. (2001). TAPping into mRNA export. Science. 294, 1841-1842
21. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. and Lührmann, R. (1995). The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell. 82, 475-483
22. Pemberton LF, Paschal BM. (2005). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic. 6, 187-198
23. Ohno, M., Segref, A., Bachi, A., Wilm, M., Mattaj, I. W. (2000). PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell. 101, 187-198
24. Gadal, O., Strauß, D., Kessl, J., Trumpower, B., Tollervey, D., Hurt, E. (2001). Nuclear export of 60S ribosomal subunits depends on Xpolp and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rp110p. Mol. Cell. Biol. 21, 3405-3415
25. Moy, T. I., Silver, P. A. (2002). Requirements for the nuclear export of the small ribosomal subunit. J Cell Sci. 115, 2985-2995
26. Brennan CM, Gallouzi IE, Steitz JA. (2000). Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol. 151, 1-14
27. Kimura T, Hashimoto I, Nagase T, Fujisawa J. (2004). CRM1-dependent, but not ARE-mediated, nuclear export of IFN-alpha1 mRNA. J Cell Sci.117, 2259-2270
28. Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J. (2006). Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem. 281, 10912-10925
29. Gallouzi IE, Steitz JA. (2001). Delineation of mRNA export pathways by the use of cell-permeable peptides. Science. 294, 1895-1901
30. Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, Hla T. (2003). Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem. 278, 2773-2776
31. Schutz S, Chemnitz J, Spillner C, Frohme M, Hauber J, Kehlenbach RH. (2006). Stimulated expression of mRNAs in activated T cells depends on a functional CRM1 nuclear export pathway. J Mol Biol. 358, 997-1009
32. Gallouzi IE, Brennan CM, Steitz JA. (2001). Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA. 7, 1348-1361
33. Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M. (2004). Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci U S A. 101, 2987-2992
34. Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M. (2004). Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. 23, 3092-3102
35. Barreau C, Paillard L, Osborne HB. (2006). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138-7150
36. Fan XC, Steitz JA. (1998). Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448-3460
37. Fan XC, Steitz JA. (1998). HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci U S A. 95, 15293-15298
38. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Atasoy U, Keene JD, Gorospe M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A. 100, 8354-8359
39. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 125, 1111-1124
40. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E. (2000). TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 20, 8996-9008
41. Wiegand, H. L., Coburn, G. A., Zeng, Y., Kang, Y., Bogerd, H. P., Cullen, B. R. (2002). Formation of Tap-NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol. Cell. Biol. 22, 245-256
42. Luo ML, Zhou Z, Magni K, Christoforides C, Rappsilber J, Mann M, Reed R. (2001). Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature. 413, 644-647
43. Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN. (1998). Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663-2676
44. Schmitt C, von Kobbe C, Bachi A, Pante N, Rodrigues JP, Boscheron C, Rigaut G, Wilm M, Seraphin B, Carmo-Fonseca M, Izaurralde E. (1999). Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332-4347
45. Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. (2006). Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol. 8, 668-676
46. Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML. (2006). Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem. 281, 35048-35056
47. Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, Wu JC, Wu Lee YH. (2006). DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene.25, 1991-2003
48. Lin JC, Tarn WY. (2005). Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol Cell Biol. 25, 10111-10121
49. Li C, Lin RI, Lai MC, Ouyang P, Tarn WY. (2003). Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol Cell Biol. 23, 7363-7376
50. Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, Steitz JA. (2000). HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci U S A. 97, 3073-3078
51. Anderson P, Kedersha N. (2006). RNA granules. J Cell Biol. 172, 803-808
52. Kedersha N, Anderson P. (2002). Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 30, 963-969
53. Anderson P, Kedersha N. (2002). Stressful initiations. J Cell Sci. 115, 3227-3234
54. Eulalio A, Behm-Ansmant I, Izaurralde E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 8, 9-22
55. Parker R, Sheth U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell. 25, 635-646
56. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 169, 871-884
57. Stohr N, Lederer M, Reinke C, Meyer S, Hatzfeld M, Singer RH, Huttelmaier S. (2006). ZBP1 regulates mRNA stability during cellular stress. J Cell Biol. 175, 527-534
58. Laroia, G., R. Cuesta, G. Brewer, and R.J. Schneider. (1999). Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science. 284, 499-502
59. Bolling, F., R. Winzen, M. Kracht, B. Bhebremedhin, B. Ritter, A. Wilhelm, K. Resch, and H. Holtmann. (2002). Evidence for general stabilization of mRNAs in response to UV light. Eur. J. Biochem. 269, 5830-5839
60. Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, Holbrook N, Gorospe M. (2000). HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 20, 760-769
61. Li H, Weinstein IB. (2006). Protein kinase C b enhances growth and expression of cyclin D1 in human breast cancer cells. Cancer Res. 66, 11399-11408
62. Yang X, Wang W, Fan J, Lal A, Yang D, Cheng H, Gorospe M. (2004). Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem. 279, 49298-49306
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top