跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳瑜
研究生(外文):Chia-Yu Lin
論文名稱:不同濃度之薑黃素對大鼠肝臟星狀細胞株HSC-T6的抑制效應研究
論文名稱(外文):Study on Inhibitory Effects of Curcumin at Different Concentrations in a Rat Hepatic Stellate Cell Line (HSC-T6)
指導教授:黃怡超黃怡超引用關係
指導教授(外文):Yi-Tsau Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:傳統醫藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:147
中文關鍵詞:細胞凋亡膠原蛋白薑黃素細胞色素c肝纖維化肝臟星狀細胞T6α-平滑肌肌動蛋白轉型生長因子-β1
外文關鍵詞:ApoptosisCollagenCurcuminCytochrome cHepatic fibrosisHepatic stellate cell-T6 (HSC-T6)α-smooth muscle actin (α-SMA)Transforming growth factor-β1 (TGF-β1 )
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
肝纖維化是由於肝臟遭受到反覆性損傷後,所產生的一種對傷口修復之反應,過程中可見到肝臟細胞被活化並造成過量的細胞外基質蛋白之堆積。研究亦指出星狀細胞的活化和致纖維化是導致肝臟纖維化的主要病理機制。因此,抑制星狀細胞的活化及致纖維化,甚至誘使其走向細胞凋亡的途徑均被視為治療肝纖維化的策略之ㄧ。薑黃素,是來源於中藥薑黃 (Curcuma longa Linn) 的一種黃色色素,其具有抗發炎和抗氧化的作用。而轉型生長因子-β1 (Transforming growth factor-beta1)是一個具多功能的細胞激素,可促進肝臟纖維化的形成。本研究即利用不同濃度 (1~40 μM)的薑黃素來探討其在體外實驗裡對肝臟纖維化的作用及機轉。
實驗中,在加入或未加入薑黃素的條件下,以1 ng/ml 濃度的TGF-β1來刺激大鼠肝臟星狀細胞HSC-T6。濃度範圍1.25~10 μM 的薑黃素對於包括α-肌動蛋白 (α-SMA)、膠原蛋白及α-肌動蛋白之信使核糖核酸等纖維化指標物質的抑制性影響分別以西方墨點法、Sircol red assay和逆轉錄-聚合酶連鎖反應 (RT-PCR)來偵測。藥物對HSC-T6細胞存活率的影響由MTT分析法來測試。此外,濃度20~40 μM的薑黃素對於星狀細胞T6進行細胞凋亡的誘導作用則以Hoechst染色與propidium iodide染色之流式細胞儀來測定。然後我們也利用西方墨點法來探討薑黃素對細胞凋亡中細胞色素c (cytochrome c)自粒線體釋出到細胞質內的影響。
我們的結果顯示,1 ng/ml 濃度的TGF-β1可以有效地增加星狀細胞對膠原蛋白的製造 (達控制組的145 ± 5 %),而在預先投予濃度範圍為1.25~10 μM的薑黃素後可對TGF-β1引起的刺激反應產生濃度效應的抑制作用;薑黃素在濃度10 μM下可明顯地抑制TGF-β1引起的膠原蛋白沉積 (達控制組的97 ± 7 %) 而不致產生細胞毒性。此外,1 ng/ml 濃度的TGF-β1亦可有效刺激細胞中α-肌動蛋白及其信使核糖核酸的表現,若預先投予同樣濃度範圍的薑黃素也可對此刺激作用產生濃度效應的抑制反應。另一方面,當單獨給予星狀細胞較高濃度範圍20~40 μM的薑黃素時,其可明顯並呈現濃度效應關係的見到細胞進行凋亡途徑,且過程中同時發現伴隨著細胞色素c由粒線體釋放至細胞質裡的現象,此亦存在著濃度效應關係。
因此我們認為薑黃素可能是依據著濃度的高低而展現其抗肝纖維化的兩種作用:即一為在低濃度時 (1.25~10 μM) 其具有抗致纖維化的作用,而在此範圍濃度下藥物並沒有明顯的細胞毒性;另一則是在高濃度時 (20~40 μM) 薑黃素又可藉由增加活化型星狀細胞粒線體內細胞色素c 釋放到細胞質而誘導細胞產生細胞凋亡的現象。由以上的實驗結果發現薑黃素具有治療或預防肝臟纖維化的潛力。
Hepatic fibrosis is a wound-healing response to repeated liver injuries and is characterized by the activation of hepatic stellate cells (HSCs) and excess accumulation of extracellular matrix (ECM) proteins. Activation and fibrogenesis of HSCs have been implicated in the pathogenesis of liver fibrosis. Therefore, suppression of activation and fibrogenesis of HSCs, as well as induction of apoptosis have been proposed as therapeutic strategies against liver fibrosis. Curcumin, a yellow curry pigment from turmeric (Curcuma longa Linn), has been shown to possess anti-inflammatory and antioxidant properties. Transforming growth factor-beta1 (TGF-β1) is a multifunctional growth factor and is the most potent cytokine for enhancing hepatic fibrogenesis. In this study, we investigated the in vitro effects of curcumin on hepatic fibrosis at the concentration range of (1~40 μM).
A cell line of rat HSC-T6 was stimulated with 1 ng/ml TGF-β1 in the presence or absence of curcumin. The inhibitory effects of curcumin (1.25~10 μM) on fibrosis markers including α-smooth muscle actin (α-SMA), collagen and the mRNA expression of α-SMA were assessed by immunoblotting, Sircol collagen assay and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The cell viability affected by curcumin was measured by MTT assay. In addition, the induction effects of curcumin (20~40 μM) on apoptosis in HSC-T6 cells were also determinated by Hoechst stains and flow cytometry analysis. Then we also investigated the release of cytochrome c from the mitochondria to the cytoplasm by using immunoblotting.
Our results revealed that TGF-β1 at 1 ng/ml induced collagen deposition of HSC-T6 cells (145 ± 5 % of controls), and pre-exposure of cells to curcumin (1.25~10 μM) inhibited the stimulatory effect of TGF-β1 in a concentration-dependent manner. Curcumin (10 μM) significantly reduced the TGF-β1-induced collagen deposition (97 ± 7 % of controls) without cytotoxicity in the MTT assay . In addition, TGF-β1 at 1 ng/ml also increased mRNA and protein expressions of α-SMA and pretreatment of curcumin (1.25~10 μM) concentration-dependently attenuated the up-regulating effect by TGF-β1. On the other hand, curcumin (20~40 μM) alone significantly and concentration- dependently enhanced apoptosis of HSC-T6 cells and this effect was accompanied by the induction of cytochrome c release from the mitochondria to the cytoplasm in a concentration-dependent manner.
We suggested that curcumin exerted anti-fibrotic effects, possibly through two different strategies depending on its concentrations. At lower concentrations (1.25~10 μM), curcumin exerted anti-fibrogenetic effect without causing significant cytotoxicity to HSC-T6 cells and at higher concentrations (20~40 μM), curcumin exerted induction of apoptosis in HSC-T6 cells. These findings indicated that curcumin might be a potential anti-fibrotic herb for treatment and prevention of hepatic fibrosis through its anti-fibrogenetic and pro-apoptotic effects.
中文摘要…………………………………………………………………… i
中文關鍵字…………………………………………………………………ii
英文摘要……………………………………………………………………iii
英文關鍵字…………………………………………………………………iv

第一章 緒論

前言…………………………………………………………………….…2
1.1 研究背景相關知識
1.1.1 肝臟基本結構、功能與細胞組成……………………………….4
1.1.1.1 基本結構與功能………………………………………… … 4
1.1.1.2 細胞組成……………………………………………………..5
1.1.2 肝纖維化………….………………………………….……... ….. 7
1.1.2.1 肝纖維化的病因……………………………………………..7
1.1.2.2 肝臟星狀細胞在肝纖維化中的作用………………………. 7
1.1.2.3 細胞外基質與肝纖維化……………………………………..9
1.1.2.3.1 細胞外基質……………. ……………………………….9
1.1.2.3.2 細胞外基質的合成與降解…………………………….10
1.1.2.4 TGF-β1與肝纖維化…………………………………………12
1.1.2.5 TGF-β1訊息傳遞路徑………………………………………14
1.1.3 細胞凋亡 (apoptosis)…………………………………… ..........15
1.1.3.1 星狀細胞與細胞凋亡………………………………………16
1.1.3.2 肝細胞凋亡與肝纖維化……………………………………18
1.1.3.3 細胞凋亡機制………………………………………………19
1.1.4 目前西醫對於肝纖維化的治療策略及相關用藥……………...22
1.1.5 中醫對於肝硬化及肝纖維化的認識與治療……………...........23
1.1.5.1 肝硬化中醫古籍記載簡介…………………………………23
1.1.5.2 病因病機……………………………………………………24
1.1.5.3 辨證施治……………………………………………………24
1.1.6 中草藥治療肝硬化、肝纖維化的相關研究…………………...25
1.1.7 薑黃素 (curcumin)及其相關研究簡介………………………...27
1.1.7.1 傳統中醫學方面…………………………………………....27
1.1.7.2 西醫學方面…………………………………………………29
1.1.7.2.1 藥物安全性…………………………………………….29
1.1.7.2.2 生物活性/ 藥理學………………………………….….29
1.2 研究背景與動機….……………………..…………………….….. .32
1.3 研究目的……………………………………………………………34

第二章 材料與方法

2.1 實驗材料
2.1.1 實驗細胞……...……………………………………………..….36
2.1.2 儀器設備………...……………………………………………...36
2.1.3 試劑與藥品……...……………………………………………...38
2.1.4 藥品配製…………...…………………………………………...41
2.2 實驗方法
2.2.1 大鼠肝臟星狀細胞株HSC-T6的培養 (Cell culture)………….45
2.2.2 HSC-T6細胞計數(Cell Counting)…………………………45
2.2.3 HSC-T6細胞存活率分析 (MTT assay)………………………46
2.2.4 HSC-T6細胞膠原蛋白之表現 (Collagen deposition
assay) ...46
2.2.5 HSC-T6細胞α-SMA蛋白質之表現--西方點墨法 (Western
blot)……………………………………………………………47
2.2.6 HSC-T6細胞RNA之萃取…………………………………….48
2.2.7 HSC-T6細胞α-SMA mRNA之表現--反轉錄和聚合酶連鎖
反應 (Reverse transcription-PCR)……………………………49
2.2.8 瓊脂凝膠電泳(Agarose gel electrophoresis)……………….50
2.2.9 細胞凋亡分析--Hoechst 33342 染色法……………………….51
2.2.10 細胞凋亡分析--流式細胞儀測試…………………………….51
2.2.11 細胞色素 c 釋出測定--西方點墨法………………………...52
2.3 統計方法……...…………..………………………………………..53

第三章 結果

3.1 薑黃素 (curcumin)對肝臟星狀細胞HSC-T6活化之研究
3.1.1 薑黃素對TGF-β1誘導星狀細胞膠原蛋白沉積的效應……....55
3.1.2 不同濃度薑黃素對星狀細胞的毒性影響…………………….55
3.1.3 薑黃素對TGF-β1誘導星狀細胞α-SMA蛋白質表現的影響....56
3.1.4 以半定量反轉錄和聚合酶連鎖反應 (semi-quantitative RT-
PCR)分析薑黃素對TGF-β1誘導星狀細胞α-SMA mRNA表現量的影響…………………………………………………...57
3.2 薑黃素對肝臟星狀細胞HSC-T6凋亡之研究
3.2.1 薑黃素對HSC-T6細胞型態的影響…………………………...58
3.2.2 利用Hoechst 33342染色偵測薑黃素對造成HSC-T6細胞凋
亡的影響……………………………………………………... 59
3.2.3 利用流式細胞儀分析薑黃素對HSC-T6細胞週期分佈及造
成其凋亡的影響………………………………………………61
3.2.4 薑黃素對HSC-T6粒線體釋放細胞色素c的影響…………….61

第四章 討論………………………………………………………….......63

4.1 肝纖維化研究的實驗細胞來源--肝臟星狀細胞株HSC-T6……...65
4.2 TGF-β在傷口修復及纖維化疾病中所扮演的角色……..……….68
4.2.1 在傷口修復方面……………………………………………....68
4.2.2 在纖維化疾病方面…………………………………………....70
4.3 TGF-β1對HSC-T6 細胞株的影響…………………………..…...72
4.4 薑黃素對抑制肝臟星狀細胞株HSC-T6 活化之效果……………74
4.5 薑黃素在不同環境下對HSC-T6細胞型態的影響………………..75
4.6 薑黃素對HSC-T6細胞凋亡與細胞週期的影響…………………..76
4.7 不同濃度之薑黃素對抑制肝纖維化之不同效應………………...78
4.8 薑黃素、丹參、川芎與大黃的抗肝纖維化作用………………...78
4.9 未來研究方向……………………………………………………...79

第五章 結論……………...…………………………………………………...81

參考文獻.……………………….….…………………….………………..83

圖表………………………………………………………………………110

圖 目 錄
圖1-1 肝臟損傷時內部結構的變化…………………………………….111
圖1-2 肝臟損傷及復原時肝臟星狀細胞之活化及復原途徑….............112
圖1-3 TGF-β與Smad活化的訊息傳遞路徑………………………….....113
圖1-4 肝細胞凋亡、發炎反應與纖維化間的關係…………………….114
圖1-5 細胞凋亡中由死亡接受器調控的外在路徑…………………….115
圖1-6 細胞凋亡中由粒線體調控的內在路徑…………………..….......116
圖1-7 理想的抗纖維化治療方法……………………………………….117
圖2-1 薑黃 (Curcuma longa Linn.;亞洲地區常稱tumeric或kunyit)藥
材…………………………………………………………………118
圖2-2 丹參 (Salvia miltiorrhiza;Danshen)藥材………………………119
圖3-1 薑黃素對TGF-β1誘發HSC-T6膠原蛋白沉積的效應………..…120
圖3-2 不同濃度薑黃素對HSC-T6細胞存活率的影響………………...121
圖3-3 薑黃素對TGF-β1誘發HSC-T6細胞α-SMA表現之抑制效應…..122
圖3-4 薑黃素對TGF-β1誘發HSC-T6細胞α-SMA mRNA表現之影響..123
圖3-5 薑黃素在不含胎牛血清 (FBS)環境下對HSC-T6細胞型態的影響……………………………....................................................................124
圖3-6 薑黃素在含低量 (2 %)胎牛血清環境下對HSC-T6細胞型態的影響………………………………………………………………………....125
圖3-7 不同濃度之薑黃素對造成HSC-T6細胞凋亡的影響…………...126
圖3-8 薑黃素對HSC-T6細胞週期分佈及造成其凋亡的影響………...129
圖3-9 薑黃素對HSC-T6粒線體釋放細胞色素c的影響…………….....131

表 目 錄
表3-1 薑黃素對HSC-T6細胞週期分佈及造成其凋亡的影響………...132
表4-1 活血化瘀類中藥抗肝纖維化作用比較表………….…………...133
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research 23: 363-398, 2003.

Ahern M, Hall P, Halliday M, Liddle C, Olynyk C. Hepatic stellate cell nomenclature. Hepatology 23: 193, 1996.

Albanis E, Friedman SL. Antifibrotic agents for liver disease. American Journal of Transplantation 6: 112-19, 2006.

Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Medica 57: 1-7, 1991.

Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth factor as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. New England Journal of Medicine 328:1592-1598, 1993.

Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC. Inhibition of Bax channel-forming activity by Bcl-2. Science 277: 370-372, 1997.

Araujo CA, Alegrio LV, Gomes DC, Lima ME, Gomes-Cardoso L, Leon LL. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Memorias do Instituto Oswaldo Cruz 94: 791-794, 1999.

Araujo CC, Leon LL. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz 96: 723-728, 2001.

Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR. Curcumin is an in vivo inhibitor of angiogenesis. Molecular Medicine 4: 376–383, 1998.

Bachem MG, Riess U, Melchior R, Sell KM, Gressner AM. Transforming growth factors (TGF alpha and TGF beta 1) stimulate chondroitin sulfate and hyaluronate synthesis in cultured rat liver fat storing cells. FEBS Letters 257: 134-137, 1989.

Bataller R, Brenner DA. Liver fibrosis. Journal of Clinical Investigation 115: 209-218, 2005.

Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R. TGF- induces biomodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63:515-524, 1990.

Bedossa P. The cell origin of extracellular matrix proteins. Journal of Hepatology 19: 1-3, 1993.

Bedossa P, Paradis V. Liver extracellular matrix in health and disease. Journal of Pathology 200: 504-515, 2003.

Bedossa P, Paradis V. Transforming growth factor β (TGF-β): a key-role in liver fibrogenesis. Journal of Hepatology 22: 37-42, 1995.

Bhavani Shankar TN, Sreenivasa Murthy V. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal & pathogenic bacteria in vitro. Indian Journal of Experimental Biology 17:1363-1366, 1979.

Bissell DM. Chronic liver injury, TGF-β, and cancer. Expremental and Molecular Medicine 33: 179-190, 2001.

Blomhoff R,Wake K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB Journal 5: 271-277, 1991.

Border WA, Noble NA. Transforming Growth Factor ß in Tissue Fibrosis. New England Journal of Medicine 331: 1286-1292, 1994.

Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E. Natural inhibitor of transforming growth factor- protects against scarring in experimental kidney disease. Nature 360:361-364, 1992.

Border WA, Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. Journal of Clinical Investigation 90: 1-7, 1992.

Borojevic R, Monteiro AN, Vinhas SA, Domont GB, Mourao PA, Emonard H, Grimaldi G Jr, Grimaud JA. Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. In Vitro Cellular and Developmental Biology 21: 382-390, 1985.

Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. Journal of Cell Biology 114: 1285-1294, 1991.

Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proceedings of the National Academy of Sciences USA 88:6642-6646, 1991.

Buck M, Kim DJ, Houglum K, Hassanein T, Chojkier M. c-Myb modulates transcription of the alpha-smooth muscle actin gene in activated hepatic stellate cells. American Journal of Physiology. Gastrointestinal and Liver Physiology
278: G321-G328, 2000.

Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39: 273-278, 2004.

Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123: 1323-1330, 2002.

Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Laboratory Investigation 83: 655-663, 2003.

Castilla A, Prieto J, Fausto N. Tranforming growth factors beta 1 and apha in chronic liver disese: effects of interferon alfa therapy. New England Journal of Medicine 324: 933-940, 1991.

Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). Journal of Alternative and Complementary Medicine 9: 161-168, 2003.

Chang MH. Chronic hepatitis virus infection in children. Journal of Gastroenterology and Hepatology 13: 541-548, 1998.

Chen A, Zhang L. The antioxidant (-)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factor-β receptor. Journal of Biological Chemistry 278: 23381-23389, 2003.

Chen H, Zhang ZS, Zhang YL, Zhou DY. Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Research 19: 3675-3680, 1999.

Chen MH, Chen JC, Tsai CC, Wang WC, Chang DC, Tu DG, Hsieh HY. The role of TGF-beta 1 and cytokines in the modulation of liver fibrosis by Sho-saiko-to in rat's bile duct ligated model. Journal of Ethnopharmacology 97: 7-13, 2005.

Cheng AL, Hsu CH, Lin JK, Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesion. Anticancer Research 21: 2895-2900, 2001.

Cheng Y, Ping J, Liu C, Tan YZ, Chen GF. Study on effects of extracts from Salvia Miltiorrhiza and Curcuma Longa in inhibiting phosphorylated extracellular signal regulated kinase expression in rat's hepatic stellate cells. Chinese Journal of Integrative Medicine 12: 207-211, 2006.

Cheng Y, Ping J, Xu LM. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chinese Medical Journal 120: 794-801, 2007.

Chuang SE, Cheng AL, Lin JK, Kuo ML. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food and Chemical Toxicology 38: 991-995, 2000.

Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590-8607, 2003.

Crean JK, Finlay D, Murphy M, Moss C, Godson C, Martin F, Brady HR. The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. Journal of Biological Chemistry 277: 44187-44194, 2002.

Czaja MJ, Weiner FR, Flanders KC, Giambrone MA, Wind R, Biempica L, Zern MA. In vitro and in vivo association of transforming growth factor-1 with hepatic fibrosis. Journal of Cell Biology 108:2477-2482, 1989.

Date M, Matsuzaki K, Matsushita M, Tahashi Y, Furukawa F, Inoue K. Modulation of transforming growth factor β function in hepatocytes and stellate cells in rat liver injury. Gut 46: 719-724, 2000.

Davidson JM. Wound repair. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation: basic principles and clinical correlates. 2nd ed. New York: Raven Press 809-819, 1992.

Deguchi Y. Spontaneous increase of transforming growth factor production by bronchoalveolar mononuclear cells of patients with systemic autoimmune diseases affecting the lung. Annuals of the Rheumatic Diseases 51:362-365, 1992.

Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian Journal of Medical Research 71: 632-634, 1980.

Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature 425: 577-584, 2003.

Dickinson DA, Moellering DR, Iles KE, Patel RP, Levonen AL, Wigley A. Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biological Chemistry 384: 527-537, 2003.

Ding HG, Wang BE, Shang HW. Effect of herbal compound 861 on expression and activity of nitric oxide synthase in hepatic stellate cells. Zhongguo Zhong Xi Yi Jie He Za Zhi 22:362-364, 2002.

Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor-beta response and signaling during trans- differentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31: 1094-1106, 2000.

Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125: 178-191, 2003.

Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M. Chemopreventive and therapeutic effects of curcumin. Cancer Letters 223: 181-190, 2005.

Eickelberg O. Endless healing: TGF-β, SMADs, and fibrosis. FEBS Letters 506: 11-14, 2001.

Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology 67: 1-6, 1999.

Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the sample becomes complex. American Journal of Physiology. Gastrointestinal Liver Physiology 279: G7-G11, 2000.

Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. Journal of Biological Chemistry 276: 1071-1077, 2001.

Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125: 437-443, 2003.

Fietta P. Many ways to die: passive and active cell deathstyles. Rivista di Biologia 99: 69-83, 2006.

Flanders KC. Smad3 as a mediator of the fibrotic response. International Journal of Experimental Pathology 85: 47–64, 2004.

Floege J, Eng E, Young BA, Alpers CE, Barrett TB, Bowen-Pope DF, Johnson RJ.Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix
accumulation in rats. Journal of Clinical Investigation 92: 2952-2962, 1993.

Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, Miyazono K. Cloning of a TGFβ type I receptor that forms a heteromeric complex with the TGFβ type II receptor. Cell 75: 681-692, 1993.

Friedman SL. Cellular sources of collagen and regulation of collagen production in liver. Seminars inLliver Disease 10: 20-29, 1990.

Friedman SL. Cytokines and fibrogenesis. Seminars in Liver Disease 19: 129-140, 1999.

Friedman SL. Liver fibrosis- from bench to bedside. Journal of Hepatology 38: S38-53, 2003.

Friedman SL. Mechanism of disease: mechanism of hepatic fibrosis and therapeutic implications. Nature Clinical Practice Gastroenterology and Hepatology 1: 98-105, 2004.

Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Journal of Biological Chemistry 275: 2247-2250, 2000.

Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Analytical Biochemistry 161: 207-218, 1987.

Gaedeke J, Noble NA, Border WA. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney International 68: 2042-2049, 2005.

Gaedeke J, Noble NA, Border WA. Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells. Kidney International 66: 112-120, 2004.

Garcia-Trevijano ER, Iraburu MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 29: 960-970, 1999.

Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Seminar Liver Disease 21:311-35, 2001.

George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat hepatic stellate cell activation by soluble transforming growth factor β type II receptor: a potential new therapy for hepatic fibrosis. Proceedings of the National Academy of Sciences USA 96: 12719-12724, 1999.

Gonzales DH, Neupert W. Biogenesis of mitochondrial c-type cytochromes. Journal of Bioenergetics and Biomembranes 22: 753-768, 1990.

Green DR. Apoptotic pathways: the roads to ruin. Cell 94: 695-696, 1998.

Green DR, Droin N, Pinkoski M. Activation-induced cell death in T cells. Immunological Reviews 193: 70-81, 2003.

Greenwel P, Rubin J, Schwartz M, Hertzberg EL, Rojkind M. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Laboratory Investigation 69: 210-216, 1993.

Gressner AM. Cytokines and cellular crosstalk involved in the activation of fat-storing cells. Journal of Hepatology 22: 28-36, 1995.

Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Frontiers in Bioscience 7:d793-807, 2002.

Grotendorst GR. connective tissue growth factor: a mediator of TGF-beta action on fibroblast. Cytokine and Growth Factor Reviews 8: 171-179, 1997.

Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differentiation 7:469-480, 1996.

Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut 54: 1024-1033, 2005.

Gutierrez-Ruiz MC, Gomez-Quiroz LE. Liver fibrosis: searching for cell model answers. Liver International 27: 434-439, 2007.

Hahm ER, Gho YS, Park S, Park C, Kim KW, Yang CH. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochemical Biophysical Research Communication 321: 337–344, 2004.

Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/ cell kill. Journal of Immunological Methods 119: 203-210, 1989.

Heldin CH, Miyazono K, Dijke P. TGF beta signaling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471,1997.

Hemman S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis-a systematic review with special emphasis on antifibrotic strategies. Journal of Hepatology 46: 955-975, 2007.

Hoyt DG, Lazo JS. Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-β precede bleomycin-induced pulmonary fibrosis in mice. Journal of Pharmacology and Experimental Therapeutics 246:765-770, 1988.

Hsu YC, Chiu YT, Cheng CC, Wu CF, Lin YL, Huang YT. Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. Journal of Gastroenterology and Hepatology 22: 99-111, 2007.

Hsu YC, Chiu YT, Lee CY, Lin YL, Huang YT. Increases in fibrosis-related gene transcripts in livers of dimethylnitrosamine-intoxicated rats. Journal of Biomedical Science 11:408-417, 2004.

Hsu YC, Chiu YT, Lee CY, Wu CF, Huang YT. Anti-fibrotic effects of tetrandrine on bile-duct ligated rats. Canadian Journal of Physiology and Pharmacology 84: 967-976, 2006.

Hsu YC, Lin YL, Chiu YT, Shiao MS, Lee CY, Huang YT. Anti-fibrotic effects of Salvia miltiorrhiza on dimethylnitrosamine-intoxicated rats.. Journal of Biomedical Science 12: 185-195, 2005.

Hsu YT, Youle JR. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. Journal of Biological Chemistry 272: 10777-10783, 1998.

Imanishi y, Maeda N, Otogawa K, Seki S, Matsui H, Kawada N,Arakawa T. Herb medicine Inchin-ko-to (TJ-135) regulates PDGF-BB-dependent signaling pathways of hepatic stellate cells in primary culture and attenuates development of liver fibrosis induced by thioacetamide administration in rats. Journal of Hepatology 41: 242–250, 2004.

Inao M, Mochida S, Matsui A, Eguchi Y, Yulutuz Y, Wang Y, Naiki K, Kakinuma T, Fujimori K, Nagoshi S, Fujiwara K. Journal of Hepatology 41: 584-591, 2004.

Iredal JP. Hepatic stellate cell behavior during resolution of liver injury. Seminar in Liver Disease 21: 427-436, 2001.

Iredal JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cells apoptosis and reduced hepatic expression of
metalloproteinase inhibitors. Journal of Clinical Investigation 102: 538-549, 1998.

Isabelle AL, Geoffrey CF, Christine S, Aileen dela Pena, Yves H. Curcumin inhibits NFκB activation and reduces the severity of experimental steatohepatitis in mice. Journal of Hepatology 41: 926-934, 2004.

Issa R, Zhou X, Trim N, Millward-Sadler H, Krane S, Benyon C, Iredale J.Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepayocyte regeneration. FASEB Journal 17: 47-49, 2003.

Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gamma-irradiation. Plastic and Reconstructive Surgery 115: 515–528, 2005.

Kagami S, Border WA, Ruoslahti E, Noble NA. Coordinated expression of beta 1 integrins and transforming growth factor--induced matrix proteins in glomerulonephritis. Laboratory Investigation 69:68-76, 1993.

Kamalakkannan N, Rukkumani R, Varma PS, Viswanathan P, Rajasekharan KN, Menon VP. Basic and Clinical Pharmacology and Toxicology 97: 15-21, 2005.

Keilin D. Cytochrome and intracellular oxidase. Proceedings of the Royal Society of London. Series B 106: 418-444, 1930.

Kim JH, Shim JS, Lee SK, Kim KW, Rha SY, Chung HC, Kwon HJ.
Microarray-based analysis of anti-angiogenic activity of
demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Japanese Journal of Cancer Research 93: 1378–1385, 2002.

Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Experimental Cell Research 139:468-471, 1982.

Kumar S, Narain U, Tripathi S, Misra K. Syntheses of curcumin bioconjugates and study of their antibacterial activities against beta-lactamase-producing microorganisms. Bioconjugate Chemistry 12: 464-469, 2001.

Kurosaka K, Watanabe N, Kobayashi Y. Production of proinflammatory cytokines by resident tissue macrophages after phagocytosis of apoptotic cells. Cell Immunology 211: 1-7, 2001.

Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Letter 129: 197–202, 1985.

Kuwabara N, Tamada S, Iwai T, Teramoto K, Kaneda N, Yukimura T, Nakatani T, Miura K. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy. Urology 67: 440-446, 2006.

Kweon YO, Paik YH, Schnabl B, Qian T, Lemasters JJ, Brenner DA. Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. Journal of Hepatology 39: 38-46, 2003.

Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid
attraction signal. Cell 113: 717-730, 2003.

Leask A and Abraham DJ. TGF-β signaling and the fibrotic response. FASEB Journal18: 816-827, 2004.

Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. Journal of Clinical Investigation 96:2461-2468, 1995.

Lee TF, Lin YL, Huang YT. Studies on Antiproliferative Effects of Phthalides from Ligusticum chuanxiong in Hepatic Stellate Cells. Planta Medica 73: 1-8, 2007.

Lee YJ, Shukla SD. Pro- and anti-apoptotic roles of c-Jun N-terminal kinase (JNK) in ethanol and acetaldehyde exposed rat hepatocytes. European Journal of Pharmacology 508: 31-45, 2005.

Li D, Friedman S. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. Journal of Gastroenterology and Hepatology 14: 618-633, 1999.

Li H, Che Y, Tang W. Effects of curcumin on proliferation and apoptosis in human hepatic cells. Zhonghua Gan Zang Bing Za Zhi 10: 449-451, 2002.

Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399, 2000.

Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Research 67: 1988-1997, 2007.

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489, 1997.

Lin YL, Lee TF, Huang YJ, Huang YT. Inhibitory effects of Ligusticum chuanxiong on the proliferation of rat hepatic stellate cell. Journal of Gastroenterology and Hepatology 21: 1257-1265, 2005.

Lin YL, Lee TF, Huang YJ, Huang YT. Antiproliferative effect of salvianolic acid A on rat hepatic stellate cells. Journal of Pharmacy and Pharmacology 58: 933-939, 2006.

Lin YL, Wu CH, Luo MH, Huang YJ, Wang CN, Shiao MS, Huang YT. In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. Journal of Ethnopharmacology 105: 215-222, 2006.

Liu P, Liu CH, Wang HN, Hu YY, Liu C. Effect of salvianolic acid B on collagen production and mitogen-activated protein kinase activity in rat hepatic stellate cells. Acta Pharmacologia Sinica 23:733-738, 2002.

Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver International 26: 8-22, 2006.

Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepatic fibrosis: molecular mechanisms and drug targets. Annual Review of Pharmacology and Toxicology 45: 605-628, 2004.

Luo DZ, Vermijlen D, Ahishali B, Triantis V, Plakoutsi G, Braet F, Vanderkerken K, Wisse E. On the cell biology of pit cells, the liver-specific NK cells. World Journal of Gastroenterology 6: 1-11, 2000.

Malich G, Markovic B, Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell line. Toxicology 23: 917-921, 1997.

Martin-Cordero C, Lopez-Lazaro M, Galvez M, Ayuso MJ. Curcumin as a DNA topoisomerase II poison. Journal of Enzyme Inhibition and Medical Chemistry 18: 505-509, 2003.

Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561-574, 2004.

Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosegawa T. Curcumin blocks activation of pancreatic stellate cells. Journal of Cellular Biochemistry 97: 1080-1093, 2006.

Massague J. TGF-beta signal transduction. Annual Review of Biochemistry 67: 753-791, 1998.

Massague J. Transforming growth factor-β family. Annual Review of Cell Biology 6: 597-641, 1990.

Massague J, Chen YG. Controlling TGF-β signaling. Genes and Development 14:627-644, 2000.

Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochemical Pharmacology 49: 1165-1170, 1995.

Milani S, Herbst H, Schuppan D, Grappone C, Pallegrini G, Pinzani M, Casini A, Calabro A, Ciancio G. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. American Journal of Pathology 144: 528-537, 1994.

Morin D, Barthélémy S, Zini R, Labidalle S, Tillement JP. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Letters 485: 131-136, 2001.

Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutrition Reviews 62: 204-211, 2004.

Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T, Nagamori S, Takeuchi K, Abe K, Kyogoku M. Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Laboratory Investigation 72: 731-739, 1995.

Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, Benyon C, Iredale JP. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. Journal of Biological Chemistry 277: 11069-11076, 2002.

Nadkarni KM. Curcuma longa. In: Nadkarni, K.M. (Ed.), Indian Materia Medica. Popular Prakashan Publishing Company, Bombay, pp.414–416, 1976.

Nagy P, Schaff Z, Lapis K. Immunohistochemical detection of transforming growth factor-beta 1 in fibrotic liver diseases. Hepatology 14: 269-273, 1991.

Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 32: 247-255, 2000.

Nanji AA, Jokelainen K, Tipoe GL, Rahemtulla A, Thomas P, Dannenberg AJ. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappaB-dependent genes. American Journal of Physiology Gastrointestinal and Liver Physiology 284: G321-G327, 2003.

Nathan C, Sporn M. Cytokines in context. The Journal of Cell Biology 113: 981-986, 1991.

Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. Journal of Hepatology 34: 248-253, 2001.

NCI, DCPC. Clinical development plan: curcumin. Journal of Cell Biochemistry 26S: 72-85, 1996.

Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends in Biochemical Sciences 22: 299-306, 1997.

Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. Journal of Hepatology 29:836-847, 1998.

Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by stellate cells. Journal of Clinical Investigation108: 1369-1378, 2001.

Okuda S, Languino LR, Ruoslahti E, Border WA. Elevated expression of transforming growth factor- and proteoglycan production in experimental glomerulonephritis: possible role in expansion of the mesangial extracellular matrix. Journal of Clinical Investigation 86:453-462, 1990.

Palmes D, Spiegel HU. Animal models of liver regeneration. Biomaterials 25: 1601-1611, 2004.

Pan Q, Li DG, Lu HM, Wang YQ, Zhang WZ, Xu QF. A new immortalized rat cell line, hepatic stellate cell-PQ, exhibiting characteristics of hepatic stellate cell. Hepatobiliary and Pancreatic Diseases International 4: 281-284, 2005.

Pinzani M. Liver fibrosis. Springer Seminars in Immunopathology 21: 475-490, 1999.

Pinzani M. Therapies for hepatic fibrosis: real hope or just academic exercise? Digestive and Liver Disease 36: 714-716, 2004.

Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Seminars in Liver Disease 21: 397-416, 2001.

Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends in Cell Biology 8: 365-372, 1998.

Proell V, Carmona-Cuenca I, Murillo MM, Huber H, Fabregat I, Mikulits W. TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comparative Hepatology 6: 1-12, 2007.

Prosser CC, Yen RD, Wu J. Molecular therapy for hepatic injury and fibrosis: where are we? World Journal of Gastroenterology 12: 509-515, 2006.

Punithavathi D, Venkatesan N, Babu M. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. British Journal of Pharmacology 131: 169-172, 2000.

Punithavathi D, Venkatesan N, Babu M. Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. British Journal of Pharmacology 139: 1342-1350, 2003.

Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockage of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proceedings of the National Academy of Sciences USA 96: 2345-2349, 1999.

Reddy AC, Lokesh BR. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Molecular and Cellular Biochemistry 111: 117–124, 1992.

Reddy AC, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry 137: 1–8, 1994.

Reyes-Gordillo K, Segovia J, Shibayama M, Vergara P, Moreno MG, Muriel P. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochimica et Biophysica Acta 1776: 989-996, 2007.

Rice-Evans C. Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proceedings of The Society for Experimental Biology and Medicine 220: 262-266, 1999.

Ricupero DA, Poliks F, Rishikof DC, Kuang PP, Goldstein RH. FEBS Letters 506: 15-21, 2001.

Roberts AB, Joyce ME, Bolander ME, Sporn MB. Transforming growth factor-beta (TGF-β): a multifunctional effector of both soft and hard tissue regeneration. In: Westermark B, Betsholtz C, Hokfelt B, eds. Growth factors in health and disease: basic and clinical aspects. Amsterdam: Excerpta Medica 89-101, 1990.

Roberts AB, Sporn MB. Peptide growth factors and their receptors. In Roberts AB, Sporn MB, eds. Handbook of Experimental Pharmacology. Heidelberg: Springer-Verlag, 419-472, 1990.

Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8: 1-9, 1993.

Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 64:867-869, 1991.

Rust C, Gores, GJ. Apoptosis and liver disease. American Journal of Medicine 108: 567-574, 2000.

Saile B, Knittel T, Matthes N, Schott P, Ramadori G. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. American Journal of Pathology 151: 1265-1272, 1997.

Sakaida I, Hironaka K, Kimura T, Terai S, Yamasaki T, Okita K. Herbal medicine Sho-saiko-to (TJ-9) increases expression matrix metalloproteinases (MMPs) with reduced expression of tissue inhibitor of metalloproteinases (TIMPs) in rat stellate cell. Life Sciences 74: 2251–2263, 2004.

Sakaida I, Matsumura Y, Akiyama S, Hayashi K, Ishige A, Okita K. Herbal medicine Sho-saiko-to (TJ-9) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Journal of Hepatology 28 : 298–306, 1998.

Sakaida I, Tsuchiya M, Kawaguchi K, Kimura T, Terai S, Okita K. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Journal of Hepatology 38 : 762–769, 2003.

Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M. Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. Journal of Hepatology 40: 52-59, 2004.

Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proceedings of the National Academy of Sciences USA 92: 2572-2576, 1995.


Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Structure and Function 28: 105-112, 2003.

Sauvant P, Sapin V, Abergel A, Schmidt CK, Blanchon L, Alexandre-Gouabau MC, Rosenbaum J, Bommelaer G, Rock E, Dastugue B, Nau H, Azais-Braesco V. PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. International Journal of Biochemistry and Cell Biology 34: 1017-1029, 2002.

Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34: 89-100, 2001.

Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Seminars in Liver Disease 21: 351-372, 2001.

Senoo H. Structure and function of hepatic stellate cells. Medical Electron Microscopy 37: 3-15, 2004.

Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. European Journal of Cancer 41: 1955-1968, 2005.

Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, Manson MM, Marnett LJ, Steward WP, Gescher A. Effects of dietarycurcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clinical Cancer Research 7:1452-1458, 2001.

Shibata N, Watanabe T, Okitsu T, Sakaguchi M, Takesue M, Kunieda T, Omoto K, Yamamoto S, Tanaka N, Kobayashi N. Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplantation 12: 499-507, 2003.

Shiota G, Maeta Y, Mukoyama T, Yanagidani A, Udagawa A, Oyama K, Yashima K, Kishomoto Y, Nakai Y, Miura T, Ito H, Murawaki Y, Kawasaki H. Effects of Sho-Saiko-to on hepatocarcinogenesis and 8-hydroxy-20-deoxyguanosine formation. Hepatology 35: 1125-1133, 2002.

Shi-wen X, Pennington D, Holmes A, Leask A, Bradham D, Beauchamp JR, Fonseca C, du Bois RM, Martin GR, Black CM, Abraham DJ. Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Experimental Cell Research 259: 213–224, 2000.

Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration 6: 167–177, 1998.

Sohara N, Znoyko I, Levy MT, Trojanowska M, Reuben A. Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. Journal of Hepatology 37: 214-221, 2002.

Sonoda E. Synchronization of cells. Sub-cellular Biochemistry 40: 415-418, 2006.

Sporn MB, Roberts AB. Autocrine secretion--10 years later. Annuals of Internationa Medicine 117: 408-414, 1992.

Sreejayan, Rao MN. Curcuminoids as potent inhibitors of lipid peroxidation. Journal of Pharmacy and Pharmacology 46: 1013–1016, 1994.

Sreejayan, Rao MN. Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology 49: 105–107, 1997.

Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. Journal of Pharmacy and Pharmacology 25: 447–452, 1973.

Svegliati Baroni G, Ridolfi F, Di Sario A, Saccomanno S, Bendia E, Benedetti A, Greenwel P. Intracellular signaling pathways involved in acetaldehyde- induced collagen and fibronectin gene expression in human hepatic stellate cells. Hepatology 33: 1130-1140, 2001.

Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, Himeno Y, Inagaki Y, Inoue K. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 35: 49-61, 2002.

Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37: 87-95, 2003.

Terrell TG, Working PK, Chow CP, Green JD. Pathology of recombinant human transforming growth factor-beta 1 in rats and rabbits. International Review of Experimental Pathology 34: 43-67, 1993.

Tomooka S, Border WA, Marshall BC, Noble NA. Glomerular matrix accumulation is linked to inhibition of the plasmin protease system. Kidney International 42:1462-1469, 1992.

Uemura M, Swenson ES, Gaça MDA, Giordano FJ, Reiss M, Wells RG. Smad2 and Smad3 play different roles in rat hepatic stellate cell function and α-smooth muscle actin organization. Molecular Biology of the Cell 16: 4214–24, 2005.

Unnikrishnan MK, Rao MN. Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Molecular and Cellular Biochemistry 146: 35–37, 1995.

Vogel S, Piantedosi R, Frank J, Lalazar A, Rockey DC, Friedman SL, Blaner WS. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. Journal of Lipid Research 41: 882-893, 2000.

Vyas SK, Leyland H, Gentry J, Arthur MJ. Rat hepatic lipocytes synthesize and secrete transin (stromelysin) in early primary culture. Gastroenterology 109: 889-898, 1995.

Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacologia et Toxicologia 43: 86-92,1978.

Wang L, Wang J, Wang BE, Xiao PG, Qiao YJ, Tan XH. Effects of herbal compound 861 on human hepatic stellate cell proliferation and activation. World Journal of Gastroenterology 10: 2831-2835, 2004.

Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biology International 29: 489-496, 2005.

Wasser S, Ho JM, Ang HK, Tan CE. Salvia miltiorrhiza reduces experimentally-induced hepatic fibrosis in rats. Journal of Hepatology 29: 760-771, 1998.

Westergren-Thorsson G, Hernnas J, Sarnstrand B, Oldberg A, Heinegard D, Malmstrom A. Altered expression of small proteoglycans, collagen, and transforming growth factor- in developing bleomycin-induced pulmonary fibrosis in rats. Journal of Clinical Investigation 92:632-637, 1993.

William PL et al. Gray’s Anatomy, 38th ed. Churchill livingstone, 1995.

Williams EJ, Benyon RC, Trim N, Hadwin R, Grove BH, Arthur MJ, Unemori EN, Iredale JP. Relaxin inhibits effective collagen deposition by cultured hepatic stellate cells and decreases rat liver fibrosis in vivo. Gut 49: 577-583, 2001.

Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. Journal of Hepatology 32: 754-761, 2000.

Wisse E, Braet F, Luo DZ, De Zanger R, Jans D, Crabbe E, Vermoesen A. Structure and function of sinusoidal lining cells in the liver. Toxicologic Pathology 24: 100-11, 1996.

Wisse E, Luo DZ, Vermijlen D, Kanellopoulou C, De Zanger R, Braet F. On the function of pit cells, the liver-specific natural killer cells. Seminars in Liver Disease 17: 265-286, 1997.

Xu J, Fu Y, Chen A. Activation of peroxisome proliferators-activated receptor-r contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. American Journal of Physiology Gastrointestinal and Liver Physiology 285: G20-G30, 2003.

Xu M, Deng B, Chow YL, Zhao ZZ, Hu B. Effects of curcumin in treatment of experimental pulmonary fibrosis: A comparison with hydrocortisone. Journal of Ethnopharmacology 112: 292-299, 2007.

Xu Y, Rojkind M, Czaja MJ. Regulation of monocyte chemoattractant protein 1 by cytokines and oxygen free radicals in rat hepatic fat-storing cells. Gastroenterology 110:1870-1877, 1996.

Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences USA 90:1814-1818, 1993.

Yamamoto T, Noble NA, Miller DE, Border WA. Sustained expression of TGF-1 underlies development of progressive kidney fibrosis. Kidney International 45:916-927, 1994.

Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129-1132, 1997.

Yata Y, Gotwals P, Koteliansky V, Rockey DC. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-β soluble receptor: implications for antifibrotic therapy. Hepatology 35: 1022-1030, 2002.

Yin C, Ma H, Wang A, Ma X, Jia J, Wang B. Effect of compound 861 on tissue inhibitor of metalloprotenase 1 gene expression of HSC-T6 cells. Zhonghua Gan Zang Bing Za Zhi 10: 197-199, 2002.

Yin MF, Lian LH, Piao DM, Nan JX. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model. World Journal of Gastroenterology 13: 1214-1220, 2007.

Yoshiji H, Kuriyama S, Miyamoto Y, Thorgeirsson UP, Gomez DE, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, Tsujinoue H, Nakatani T, Thorgeirsson SS, Fukui H. Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a transgenic mouse model. Hepatology 32: 1248-1254, 2000.

Zhang C, Zhu Y, Wan J, Xu H, Shi H, Lu X. Effects of Ginkgo biloba extract on cell proliferation, cytokines and extracellular matrix of hepatic stellate cells. Liver International 26:1283-1290, 2006.

Zheng S, Chen A. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. Biochemical Journal 384: 149-157, 2004.

Zheng S, Chen A. Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. American Journal of Physiology.
Gastrointestinal and Liver Physiology 290: G883-893, 2006.

Zheng S, Chen A. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 292: G113-123, 2007.

Zhou Y, Zheng S, Lin J, Zhang QJ, Chen A. The interruption of the PDGF and EGF signaling pathways by curcumin stimulates gene expression of PPARgamma in rat activated hepatic stellate cell in vitro. Laboratory Investigation 87: 488-489, 2007.

行政院衛生署統計室. 民國95年台灣地區主要死因統計結果分析 2007.

行政院衛生署中醫藥委員會. 急慢性肝炎 2001.

倪衍玄. 全國B型肝炎疫苗接種計劃實施十五年後兒童及年輕成人B型肝炎血清流行病學變化 衛生署計劃, 2000.

王寶恩, 張定鳳主編. 現代肝臟病學(第一版) 科學出版社, 中國,
p1002-1012, 1999.

冉先德主編. 中華藥海 哈爾濱出版社, 中國, p1228-1231, 1994.

林昭庚主編. 中西醫病名對照大辭典(第一版) 人民衛生出版社, 中國, p1333-1337, 2002.

李庭芳. 川芎抑制肝臟星狀細胞株HSC-T6 增生之研究 (碩士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2004.

吳佳鴻. 丹參抑制大鼠初代星狀細胞活化之研究 (碩士論文) 陽明
大學傳統醫藥研究所, 台北, 台灣, 2004.

許益超. 丹參對於肝硬化大鼠之轉型生長因子及原膠原蛋白基因表現的效應研究 (碩士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2002.

許益超. 丹參與粉防己鹼抑制大鼠肝纖維化之研究 (博士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2005.

張雅雱. 丹參的保肝和抗氧化效應體外與活體試驗之研究 (碩士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2001.

陳麒任. 丹參與silymarin對於肝硬化大鼠之氧化性傷害與粒線體功能損傷之保護效應研究 陽明大學傳統醫藥研究所, 台北, 台灣, 2001.

陳麗霞. 以肝臟星狀細胞株HSC-T6探討可抑制肝纖維化之中草藥陽明大學傳統醫藥研究所, 台北, 台灣, 2003.

劉千慈. 丹參與水飛薊對膽管結紮手術導致的肝硬化鼠之粒線體功能失常的治療作用 (碩士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2001.

羅妙華. 以大鼠肝細胞與星狀細胞為模式探討抗纖維化之保肝中藥(碩士論文) 陽明大學傳統醫藥研究所, 台北, 台灣, 2002.

駱俊銘. 丹参酚酸B與黃芩素抑制肝星狀細胞活化的效應研究 (碩士論文) 文化大學應用化學研究所, 台北, 台灣, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊