跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃瑞川
研究生(外文):Swee-Chuan Ng
論文名稱:出血性大腸桿菌O157:H7致病島嶼中基因l0032及l0033之功能探討
論文名稱(外文):Characterization of l0032 and l0033 in the Pathogenicity Island of Enterohemorrhagic Escherichia coli O157:H7
指導教授:許萬枝許萬枝引用關係
指導教授(外文):Wan-Jr Syu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:83
中文關鍵詞:出血性大腸桿菌 O157:H7致病島嶼l0032l0033
外文關鍵詞:Enterohemorrhagic Escherichia coli O157:H7Pathogenicity Islandl0032l0033
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
出血性大腸桿菌 (EHEC) 屬於病原性大腸桿菌之一,其感染人類腸內上皮細胞後會破壞腸內微絨毛而產生所謂的 A/E lesion 病灶。一般來說,引發 A/E lesion 病灶的特性已證明和細菌染色體上致病島嶼 LEE有關聯性,該島嶼內共包含有 41 個開放閱讀框架 (open reading frame),而約可歸為五個主要的操縱子 (operon)。EHEC 致病過程是藉由第三型分泌系統 (TTSS) 將分泌性蛋白質送至宿主細胞,在宿主細胞內引發訊息傳導,造成宿主肌動蛋白聚集與微絨毛消失。 l0032 為 LEE3 operon 中功能未知的開放性閱讀框架。我們以同源性基因重組 (homologous recombination) 刪除 l0032 得到的突變株,發現其體內第三型分泌系統蛋白質的合成並未受到影響。另外,我們也發現轉位器 (translocator) 的分泌量有下降的趨勢,但作用蛋白 (effector) 卻能正常地被分泌。由此可以推論 L0032 在第三型分泌系統中,可能扮演著調控轉位器的分泌的角色。另一方面,我們利用細部分離法 (fractionation) 證實了 L0032 主要位於細菌的內膜部份。l0033 為本論文中所研究的另一個功能未知的開放性閱讀框架。本實驗室先前的研究發現, l0033 突變株的分泌性蛋白質 EspA 的合成量會下降,Tir、EspA、EspD、EspB 的分泌亦受到影響。本論文進一步探討 EspA 受到調控的層次,發現 L0033 可能參與在 EspA 轉錄後調控的過程。我們也觀察到 EspA 在野生株中遠比 l0033 突變株中來得更穩定,推測 L0033 可能扮演著穩定 EspA 的角色。此外,經由鎳離子親和性管柱層析法,我們認為 L0033 和 EspA 之間可能存在著相互作用的關係。到底 L0033 和 EspA 如何作用,仍有待我們進一步的研究。
Enterohemorrhagic Escherichia coli (EHEC) forms typical histological lesions termed attaching and effacing (A/E) lesions on infected large intestine tissue. Genetically, EHEC has a set of virulent genes organized on a locus of enterocyte effacement (LEE) involved in the A/E lesion. The LEE island comprises 41 open reading frames (ORFs), of which most are organized in five operons. l0032 is an uncharacterized ORF of LEE3 operon. When l0032 was deleted from the LEE in EHEC, the synthesis of type III secretion proteins remained as usual. On the other hand, the secretion of the translocators was reduced but Tir could be secreted normally. Thus, L0032 is required for the secretion of translocators. To analyze the localization of L0032 in the bacteria, protein fractionation was carried out and we found that L0032 was mainly located in the inner membrane fraction. We also studied L0033. l0033 had been previously studied and in preliminary results, we found that the synthesis of EspA was significantly reduced, and the type III secretion was completely abolished in a l0033-deletion mutant. We speculated that L0033 may be involved in the post-transcriptional regulation of EspA, particularly focusing on the stabilization of EspA during the secretion process. Our results also suggested that L0033 likely formed complexes with EspA under native condition. Therefore, we assumed that L0033 may act as an auxiliary protein to assist EspA to pass through the channel during the assembly of the type III secretion system.
Content

Abstract (Chinese) ...…………………………………………… 4 Abstract …………………………………………………………….5 1. Introduction ……………………………………………………6 1-1. Escherichia coli (E. coli) ………………………………6 1-2. Diarrheagenic E. coli ...……………………………….7
1-2-1. Enterotoxigenic E. coli (ETEC) ………………………7
1-2-2. Enteroaggregative E. coli (EAEC) ……………………8
1-2-3. Diffusely adherent E. coli (DAEC)…………………...8 1-2-4. Enteroinvasive E. coli (EIEC)………………………8
1-2-5. Enteropathogenic E. coli (EPEC) ……………………………….9 1-2-6. Enterohemorrhagic E. coli (EHEC) …………………………...9 1-3. Enterohemorrhagic E. coli (EHEC) and O157:H7 ……………..10 1-4. Virulent Factors of EHEC ………………………………………..12 1-4-1. Shiga Toxin (Stx) ………………………………..………………12 1-4-2. Enterohemolysin ………………………………………………..13 1-4-3. Adhersin ………………………………………………………...14 1-4-4. Type III Secretion System and Effector Molecules ………..…14 1-5. Genetic Content of EHEC O157:H7……………………………..14 1-6. The Locus of Enterocyte Effacement (LEE) ……………………15 1-7. Type III Secretion System (TTSS) ……………………………….17 1-8. l0032 ...……………………………………………………………..21 1-9. l0033 …….…………………………………………………………21 1-10. Rationales and Aims …….………………………………….……21 2. Materials and Methods ...…………………………………………...22 2-1. Bacterial Strain and Culture conditions ………………………...22 2-2. Oligonucleotide Primers ………………………………………….23 2-3. Antibodies …………………………………………………………23 2-4. Molecular Cloning ………………………………………………..23 2-5. Polymerase Chain Reaction (PCR) ……………………………...23 2-6. Preparation of Competent Cells …………………………………24 2-6-1. Competent Cell used for Heat-shock Transformation ……….24 2-6-2. Competent Cell used for Electroporation Transformation ….24 2-7. Transformation ………………………………………………...…25 2-7-1. Heat-shock Method …………………………………………….25 2-7-2. Electroporation …………………………………………………25 2-8. Plasmid …………………………………………………………….26 2-9. Agarose Gel Electrophoresis ……………………………………..26 2-10. Gene Knockout …………………………………………………..27 2-11. Protein Expression and Purification …………………………...28 2-12. Sodium Dodecyl Sulfate-Polyarylamide Gel Electrophoresis
(SDS-PAGE) …………………………………………….………...29 2-13. Western Blotting ………………………………………………...30 2-14. Polyclonal Antibody Preparation ………………………………31 2-15. Preparation of Secreted protein ………………………………...32 2-16. Preparation of Intracellular Protein …………………………...32 2-17. Fractionation of Bacteria Protein ………………………………33 2-18. Analysis of EspA Stability ………………………………………34 2-19. Affinity Purification with Ni2+ column …………………………35 2-20. Bioinformatics Analysis …………………………………………35 3. Results ………………………………………………………………..37 3-1. L0032 ………………………………………………………………37 3-1-1. Physical Properties of L0032 …………………………………..37 3-1-2. Construction of l0032-deletion Mutant and its Genotype ……37 3-1-3. Specificity of L0032 Polyclonal Antibody ……………………..38 3-1-4. Phenotype of l0032-deletion Mutant …………………………..38 3-1-5. L0032 is Located on the Inner Membrane in EHEC ………...39 3-2. L0033 ………………………………………………………………40 3-2-1. Sequence Analysis of L0033 ……………………………………40 3-2-2. Expression of L0033 in E. coli K12 Strains and in EHEC …...41 3-2-3. Absence of L0033 also Affects the Expression of EspA
From Plasmids …………………………………………………43 3-2-4. Stability of Exogenous EspA in l0033-deletion Mutant ……...43 3-2-5. L0033 can associate with EspA under Native Condition …….44 4. Discussion ……………………………………………………………46 4-1. L0032 is Required for the Secretion of Translocators ………….46 4-2. The Regulation of L0033 …………………………………………47 4-3. L0033 is implicated in the Post-transcriptional Regulation of
EspA ……………………………………………………………….48 4-4. The Relationship between EspA and L0033 …………………….50 5. Reference …………………………………………………………….53 6. Tables ………………………………………………………………...61 7. Figures ……………………………………………………………….65
Abe, H., Tatsuno, I., Tobe, T., Okutani, A., and Sasakawa, C. (2002). Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infection and immunity 70, 3500-3509.

Aizawa, S.I. (2001). Bacterial flagella and type III secretion systems. FEMS microbiology letters 202, 157-164.

Akeda, Y., and Galan, J.E. (2004). Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. Journal of bacteriology 186, 2402-2412.

Appel, R.D., Bairoch, A., and Hochstrasser, D.F. (1994). A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19, 258-260.

Austin, P.R., Jablonski, P.E., Bohach, G.A., Dunker, A.K., and Hovde, C.J. (1994). Evidence that the A2 fragment of Shiga-like toxin type I is required for holotoxin integrity. Infection and immunity 62, 1768-1775.

Banatvala, N., Griffin, P.M., Greene, K.D., Barrett, T.J., Bibb, W.F., Green, J.H., and Wells, J.G. (2001). The United States National Prospective Hemolytic Uremic Syndrome Study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis 183, 1063-1070.

Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschape, H., and Hacker, J. (1994). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infection and immunity 62, 606-614.

Brendel, V., Bucher, P., Nourbakhsh, I.R., Blaisdell, B.E., and Karlin, S. (1992). Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89, 2002-2006.

Bustamante, V.H., Santana, F.J., Calva, E., and Puente, J.L. (2001). Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol Microbiol 39, 664-678.

Chiu, H.J., Lin, W.S., and Syu, W.J. (2003). Type III secretion of EspB in enterohemorrhagic Escherichia coli O157:H7. Archives of microbiology 180, 218-226.

Clarke, S.C., Haigh, R.D., Freestone, P.P., and Williams, P.H. (2003). Virulence of enteropathogenic Escherichia coli, a global pathogen. Clinical microbiology reviews 16, 365-378.

Cornelis, G.R. (2002). Yersinia type III secretion: send in the effectors. The Journal of cell biology 158, 401-408.

Creasey, E.A., Delahay, R.M., Daniell, S.J., and Frankel, G. (2003a). Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149, 2093-2106.

Creasey, E.A., Friedberg, D., Shaw, R.K., Umanski, T., Knutton, S., Rosenshine, I., and Frankel, G. (2003b). CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149, 3639-3647.

Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997). Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10, 673-676.

Deng, W., Li, Y., Vallance, B.A., and Finlay, B.B. (2001). Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infection and immunity 69, 6323-6335.

Deng, W., Puente, J.L., Gruenheid, S., Li, Y., Vallance, B.A., Vazquez, A., Barba, J., Ibarra, J.A., O'Donnell, P., Metalnikov, P., et al. (2004). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101, 3597-3602.

DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., and Finlay, B.B. (1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infection and immunity 67, 2389-2398.

Ebel, F., Podzadel, T., Rohde, M., Kresse, A.U., Kramer, S., Deibel, C., Guzman, C.A., and Chakraborty, T. (1998). Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol Microbiol 30, 147-161.

Elliott, S.J., Sperandio, V., Giron, J.A., Shin, S., Mellies, J.L., Wainwright, L., Hutcheson, S.W., McDaniel, T.K., and Kaper, J.B. (2000). The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and immunity 68, 6115-6126.

Elliott, S.J., Wainwright, L.A., McDaniel, T.K., Jarvis, K.G., Deng, Y.K., Lai, L.C., McNamara, B.P., Donnenberg, M.S., and Kaper, J.B. (1998). The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28, 1-4.

Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., and Igarashi, K. (1988). Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. European journal of biochemistry / FEBS 171, 45-50.

Feeney, A.R., Cooke, E.M., and Shinebaum, R. (1980). A comparative study of gram-negative aerobic bacilli in the faeces of babies born in hospital and at home. J Hyg (Lond) 84, 91-96.

Galan, J.E., Ginocchio, C., and Costeas, P. (1992). Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. Journal of bacteriology 174, 4338-4349.

Garmendia, J., Frankel, G., and Crepin, V.F. (2005). Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infection and immunity 73, 2573-2585.

Gauthier, A., Puente, J.L., and Finlay, B.B. (2003). Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infection and immunity 71, 3310-3319.
Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C.G., Ohtsubo, E., Nakayama, K., Murata, T., et al. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8, 11-22.

Herring, C.D., Glasner, J.D., and Blattner, F.R. (2003). Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311, 153-163.

Hueck, C.J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379-433.

Ide, T., Laarmann, S., Greune, L., Schillers, H., Oberleithner, H., and Schmidt, M.A. (2001). Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3, 669-679.

Jarvis, K.G., Giron, J.A., Jerse, A.E., McDaniel, T.K., Donnenberg, M.S., and Kaper, J.B. (1995). Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A 92, 7996-8000.

Jerse, A.E., and Kaper, J.B. (1991). The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infection and immunity 59, 4302-4309.

Kaper, J.B., Nataro, J.P., and Mobley, H.L. (2004). Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123-140.

Karlinsey, J.E., Lonner, J., Brown, K.L., and Hughes, K.T. (2000). Translation/secretion coupling by type III secretion systems. Cell 102, 487-497.

Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., and Finlay, B.B. (1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511-520.

Knutton, S., Adu-Bobie, J., Bain, C., Phillips, A.D., Dougan, G., and Frankel, G. (1997). Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infection and immunity 65, 1644-1652.

Knutton, S., Baldwin, T., Williams, P.H., and McNeish, A.S. (1989). Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infection and immunity 57, 1290-1298.

Knutton, S., Rosenshine, I., Pallen, M.J., Nisan, I., Neves, B.C., Bain, C., Wolff, C., Dougan, G., and Frankel, G. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. Embo J 17, 2166-2176.

Kresse, A.U., Rohde, M., and Guzman, C.A. (1999). The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infection and immunity 67, 4834-4842.

Lai, L.C., Wainwright, L.A., Stone, K.D., and Donnenberg, M.S. (1997). A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infection and immunity 65, 2211-2217.

Lio, J.C., and Syu, W.J. (2004). Identification of a negative regulator for the pathogenicity island of enterohemorrhagic Escherichia coli O157:H7. J Biomed Sci 11, 855-863.

Louie, M., de Azavedo, J.C., Handelsman, M.Y., Clark, C.G., Ally, B., Dytoc, M., Sherman, P., and Brunton, J. (1993). Expression and characterization of the eaeA gene product of Escherichia coli serotype O157:H7. Infection and immunity 61, 4085-4092.

Louise, C.B., and Obrig, T.G. (1995). Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J Infect Dis 172, 1397-1401.

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162-1164.

McGraw, E.A., Li, J., Selander, R.K., and Whittam, T.S. (1999). Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 16, 12-22.

Mecsas, J.J., and Strauss, E.J. (1996). Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerging infectious diseases 2, 270-288.

Moon, H.W., Whipp, S.C., Argenzio, R.A., Levine, M.M., and Giannella, R.A. (1983). Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infection and immunity 41, 1340-1351.

Nataro, J.P., and Kaper, J.B. (1998). Diarrheagenic Escherichia coli. Clinical microbiology reviews 11, 142-201.

Naylor, S.W., Gally, D.L., and Low, J.C. (2005). Enterohaemorrhagic E. coli in veterinary medicine. Int J Med Microbiol 295, 419-441.

Neidhardt, F.C., Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., M., S., and HE., U. (1996). Escherichia coli and Salmonella: cellular and molecilar biology (In: eds. Washington, DC., American Society for Microbiology Press).

O'Brien, A.D., Lively, T.A., Chang, T.W., and Gorbach, S.L. (1983). Purification of Shigella dysenteriae 1 (Shiga)-like toxin from Escherichia coli O157:H7 strain associated with haemorrhagic colitis. Lancet 2, 573.

Oswald, E., Schmidt, H., Morabito, S., Karch, H., Marches, O., and Caprioli, A. (2000). Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infection and immunity 68, 64-71.

Pallen, M.J., Beatson, S.A., and Bailey, C.M. (2005). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC microbiology 5, 9.

Perna, N.T., Mayhew, G.F., Posfai, G., Elliott, S., Donnenberg, M.S., Kaper, J.B., and Blattner, F.R. (1998). Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infection and immunity 66, 3810-3817.

Perna, N.T., Plunkett, G., 3rd, Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans, P.S., Gregor, J., Kirkpatrick, H.A., et al. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529-533.

Richardson, S.E., Rotman, T.A., Jay, V., Smith, C.R., Becker, L.E., Petric, M., Olivieri, N.F., and Karmali, M.A. (1992). Experimental verocytotoxemia in rabbits. Infection and immunity 60, 4154-4167.

Riley, L.W., Remis, R.S., Helgerson, S.D., McGee, H.B., Wells, J.G., Davis, B.R., Hebert, R.J., Olcott, E.S., Johnson, L.M., Hargrett, N.T., et al. (1983). Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308, 681-685.

Roe, A.J., Yull, H., Naylor, S.W., Woodward, M.J., Smith, D.G., and Gally, D.L. (2003). Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infection and immunity 71, 5900-5909.

Sandvig, K., and van Deurs, B. (1994). Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS Lett 346, 99-102.

Saxena, S.K., O'Brien, A.D., and Ackerman, E.J. (1989). Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem 264, 596-601.

Scaletsky, I.C., Silva, M.L., and Trabulsi, L.R. (1984). Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infection and immunity 45, 534-536.

Schmidt, H., Karch, H., and Beutin, L. (1994). The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS microbiology letters 117, 189-196.

Schmidt, H., Maier, E., Karch, H., and Benz, R. (1996). Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. European journal of biochemistry / FEBS 241, 594-601.

Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., and Abe, A. (2001). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98, 11638-11643.

Sharma, V.K., and Zuerner, R.L. (2004). Role of hha and ler in transcriptional regulation of the esp operon of enterohemorrhagic Escherichia coli O157:H7. Journal of bacteriology 186, 7290-7301.

Tsai, N.P., Wu, Y.C., Chen, J.W., Wu, C.F., Tzeng, C.M., and Syu, W.J. (2006). Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. The Biochemical journal 393, 591-599.

Tzipori, S., Gunzer, F., Donnenberg, M.S., de Montigny, L., Kaper, J.B., and Donohue-Rolfe, A. (1995). The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infection and immunity 63, 3621-3627.

Van Gijsegem, F., Genin, S., and Boucher, C. (1993). Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends in microbiology 1, 175-180.

Warawa, J., Finlay, B.B., and Kenny, B. (1999). Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infection and immunity 67, 5538-5540.

Wilson, R.K., Shaw, R.K., Daniell, S., Knutton, S., and Frankel, G. (2001). Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3, 753-762.

Winstanley, C., and Hart, C.A. (2001). Type III secretion systems and pathogenicity islands. J Med Microbiol 50, 116-126.

Yip, C.K., Finlay, B.B., and Strynadka, N.C. (2005). Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nature structural & molecular biology 12, 75-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top