跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 12:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊正昌
研究生(外文):Cheng-Chang, Yang
論文名稱:脊髓損傷後自體功能回復的形態學
論文名稱(外文):Morphological Changes and Protein Analysis during Spontaneous Functional Recovery after Spinal Cord Injury
指導教授:游祥明
指導教授(外文):Shang-Ming, Yu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:細胞凋亡誘導因子電子顯微鏡學細胞程式死亡脊髓損傷血管內皮生長因子
外文關鍵詞:AIFelectron microscopyprogrammed cell deathspinal cord injuryVEGF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
哺乳動物中脊髓非常容易受到外力因素而損傷,脊髓損傷會造成
局部的缺血、離子的不平衡、麩氨酸的釋放以及去髓鞘化等種種退化
性傷害。先前報導指出脊髓損傷後給予生長因子,能夠有效達到血管
保護及促進寡突神經膠細胞新生的效果。雖然,脊髓損傷後的功能自
發性回復已經被發現,但其中所牽涉的因子及機制仍未被完整的研究
揭露出來。本實驗係採用250-300 公克的雄性大白鼠做動物模式,經
由300 毫克/公斤腹腔注射水化氯醛麻醉,將胸髓T8 左側橫切以模擬
脊髓損傷之用。實驗組動物分為 (1) 形態分析組以及 (2) 蛋白體分
析組。動物分別於損傷後第6 和24 小時,4、7、14 和21 天犧牲。動
物中樞神經組織分別以6% 三聚甲醛-離胺酸-過碘酸鹽固定,做為形
態學觀察,或另外以均質化做為蛋白質體分析之用。在光學顯微鏡下
觀察,可見損傷後白質及灰質損壞區域的變化,在高倍率光學顯微鏡
下觀察,可見損傷後細胞呈現空泡化的現象,在手術後第7 天,則可
顯著看見許多的梭狀纖維樣細胞散生於白質受損區之中。在電子顯微
鏡下觀察,受損區的神經細胞呈現細胞質消失、細胞膜以及有形結構
明顯被破壞,許多細胞呈現細胞凋亡的現象。細胞內空泡的超微結構,
呈現空泡狀或具有雙層單位膜的結構。脊髓損傷的後期,出現的類似
梭狀纖維樣細胞,而在其細胞質中可發現許多的粗糙內質網具有膨大
池狀結構。在蛋白體分析中,由西方墨漬法呈現血管內皮生長因子
(VEGF) 及細胞凋亡誘導因子 (AIF),在損傷後期才有顯著表現;而
Bcl-2 則是在損傷後的急性期,即有大量表現並隨著回復時間的增加而
遞減。在損傷後蛋白體表現分析的二維凝膠電泳中,經由分析後定序
出數種不同的蛋白質體。本研究指出在損傷後的急性期中,Bcl-2 可能
扮演調控與保護的角色,而VEGF 則可能在脊髓損傷的後期具有保護
血管的功能。並且形態學的結果顯示,脊髓損傷後細胞死亡的方式不
僅含有細胞凋亡, 並且亦含有旁凋亡 (paraptosis) 與自噬凋亡
(autophagotic death) 的程式性死亡。
The adult mammalian central nervous system is vulnerable to various injuries or
trauma. Spinal cord injury (SCI) results in ischemia and hypoxia followed by a series of
degenerating events. SCI also results in ion unbalance, glutamate release and
demyelination. Administration of the growth factor leads to repair of blood vessels or
replacement of neurons and oligodendrocytes in the injured spinal cord. Spontaneous
functional recovery after spinal cord injury was found previously. However, the
mechanism involved in the spinal cord injury was still not fully elucidated. In this study,
adult male Sprague-Dawley rats (250-300g) were anesthetized with chloral hydrate (300
mg/Kg, i.p.) and hemisectioned (left side) at T8 vertebral level. In the experimental
group, animals were divided into two subgroups: (1) morphological analysis and (2)
proteomic analysis. Animals were sacrificed at 6, 12 hours, 1, 4, 7, 14 and 21 days after
spinal cord injury. Brain tissue either fixed with 6% pareformaldehyde-lysine-periodate
prepared for morphological analysis or homogenized for proteomic analysis. In the light
microscopic level, both white and gray matter were smashed and completely lesioned in
the experimental spinal cord. At higher magnification, abundant vacuoles were located
in the cytoplasm after spinal cord injury. At postlesion day 7, numerous spindle-shaped
fibrocyte-like cells occupied the injured area in the white matter of the spinal cord.
Under the electron microscope, the cell lost its cytoplasm and became amorphous
structure indicative of markedly destroyed cytoplasmic organelles. Many apoptotic-like
structures were also found. There were some vacuoles contain double membrane.
Several spindle-shaped fibrocyte-like cells contained abundant rough endoplasmic
reticulum and partially dilated cisternae. In the western blotting, VEGF and AIF were
markedly expressed at late stage of recovery but the Bcl-2 was expressed at early stage.
Numerous proteins were sequenced by LC/MS/MS followed 2-dimentional
electrophoresis. Our results indicate that Bcl-2 may protect the survival from cell death
at early stage and VEGF may protect the intact of the blood vessel during middle to late
stage after spinal cord injury. The morphological findings showed that programmed cell
death contained not only apoptosis but also paraptosis and autophagic death after injury.
中文摘要...........................................1
英文摘要...........................................2
前言...............................................3
材料與方法.........................................6果................................................17
討論..............................................23
參考文獻..........................................27
圖表與說明........................................36
1. Adachi S, Cross AR, Babior BM, Gottlieb RA (1997) Bcl-2 and the outer
mitochondrial membrane in the inactivation of cytochrome c during
Fas-mediated apoptosis. J Biol Chem 272:21878-21882.
2. Altman J (1963) Autoradiographic investigation of cell proliferation in the
brains of rats and cats. Anat Rec 145:573-591.
3. Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G,
Mocchetti I (2001) Interleukin-10 prevents glutamate mediated cerebellar
granule cell death by blocking caspase-3-like activity. J Neurosci
21:3104-3112.
4. Balasingam V, Yong VW (1996) Attenuation of astroglial reactivity by
interleukin-10. J Neurosci 16:2945-2955.
5. Balentine JD (1978) Pathology of experimental spinal cord trauma: I. The
necrotic lesion as a function of vascular injury. Lab Invest 39:236-253.
6. Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction
correlates with changes in the vascular architecture upon spinal cord damage
in the rat. Eur. J Neurosci 9:2549-2560.
7. Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine
and chemokine mRNA upon experimental spinal cord injury in mouse: an in
situ hybridization study. Eur J Neurosci 9:1422-1438.
8. Benton RL and Whittemore SR (2003) VEGF165 Therapy Exacerbates
Secondary Damage following Spinal Cord Injury. Neurochem Res 28:
1693-1703.
9. Blight AR (1993) Remyelination, revascularization, and recovery of function
in experimental spinal cord injury. Adv Neurol 59:91-104.
10. Brodie C, (1996) Differential effects of Th1 and Th2 derived cytokines on
NGF synthesis by mouse astrocytes. FEBS Lett 394:117-120.
29
11. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen
CN, Mucke L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration,
neuronal degeneration, and neurite outgrowth after ablation of scarforming,
reactive astrocytes in adult transgenic mice. Neuron 23:297-308.
12. Cao QL, Howard RM, Dennison JB, Whittemore SR (2002) Differentiation
of engrafted neuronal-restricted precursor cells is inhibited in the
traumatically injured spinal cord. Exp Neurol 177:349 -359.
13. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM,
Bunge MB, Whittemore SR (2005) Functional recovery in traumatic spinal
cord injury after transplantation of multineurotrophin expressing
glial-restricted precursor cells. J Neurosci 25:6947-6957.
14. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell
death can occur through a necrotic and caspase-independent pathway. Curr
Biol 9:967-970.
15. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan
GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak.
Nature 374:733-736.
16. Choi JS, Kim HY, Cha JH, Choi JY, Park SI, Jeong CH, Jeun SS, Lee MY
(2007) Upregulation of vascular endothelial growth factor receptors Flt-1
and Flk-1 following acute spinal cord contusion in rats. J Histochem
Cytochem 2-31.
17. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park
DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant
in p53-induced apoptosis in neurons. J Neurosci 19:7860-7869.
18. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997)
Apoptosis and delayed degeneration after spinal cord injury in rats and
monkeys. Nat Med 3:73-76.
19. Cumming BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R,
Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and
30
promote locomotor recovery in spinal cord-injured mice. Proc Nat Acad Sci
USA 102:14069-14074.
20. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N,
Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000)
Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB
J 14:729-739.
21. Deckwerth TL, Elliott JL, Knudson CM, Johnson JrEM, Snider WD,
Korsmeyer SJ (1996) Bax is required for neuronal death after trophic
factor deprivation and during development. Neuron 17:401-411.
22. Dong H, Fazzaro A, Xiang C, Korsmeyer SJ, Jacquin MF, McDonald J W
(2003) Enhanced oligodendrocyte survival after spinal cord injury in
Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci
23:8682-8691.
23. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory
reaction after dorsal hemisection of the rat spinal cord. Eur. J Neurosci 6:
712-724.
24. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV
(2004) Reactive astrocytes protect tissue and preserve function after spinal
cord injury. J Neurosci 24:2143-2155.
25. Fehlings MG, Tator CH, Linden RD (1989) The relationships among the
severity of spinal cord injury, motor and somatosensory evoked potentials
and spinal cord blood flow. Electroencephalogr Clin Neurophysiol
74:241-259.
26. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991)
IL-10 inhibits cytokine production by activated macrophages. J Immunol
147:3815-3822.
27. Fitch MT, Doller C, Combs, CK, Landreth, GE, Silver, J (1999) Cellular
and molecular mechanisms of glial scarring and progressive cavitation: in vivo
and in vitro analysis of inflammation-induced secondary injury after CNS
trauma. J Neurosci 19:8182-8198.
31
28. Fouad K, Pearson K (2004) Restoring walking after spinal cord injury. Prog
Neurobiol 73:107-126.
29. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000)
Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic
damage. Eur. J Neurosci 12:2265-2272.
30. Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal–spatial pattern
of acute neuronal and glial loss after spinal cord contusion. Exp Neurol
168:273-282.
31. Gulino R, Dimartino M, Casabona A, Lombardo SA, Perciavalle V (2007)
Synaptic plasticity modulates the spontaneous recovery of locomotion after
spinal cord hemisection. Neurosci Res 57:148-156.
32. Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD
(1981) Ca2+accumulation in experimental spinal cord trauma. Brain Res 211:
476-479.
33. Jttel, M, Tschopp J (2003) Caspase-independent cell death in T
lymphocytes. Nat Immunol 4:416-423.
34. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999)
Identification of a neural stem cell in the adult mammalian central nervous
system. Cell 96:25-34.
35. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC
(1998) Bax directly induces release of cytochrome c from isolated
mitochondria. Proc Natl Acad Sci USA 95:4997-5002.
36. Kastin AJ, Akerstrom V, Pan W (2003) Interleukin-10 as a CNS therapeutic:
the obstacle of the blood-brain/blood-spinal cord barrier. Mol Brain Res
114:168- 171.
37. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward
O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor
32
cell transplants remyelinate and restore locomotion after spinal cord injury. J
Neurosci 25:4694-4705.
38. Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Muller
D, Zuschratter W, Muller HW (2005) Suppression of fibrous scarring in
spinal cord injury of rat promotes long-distance regeneration of corticospinal
tract axons, rescue of primary motoneurons in somatosensory cortex and
significant functional recovery. Eur J Neurosci 22:3047-3058.
39. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) Release of
cytochrome c from mitochondria: a primary site for Bcl-2 regulation of
apoptosis. Science 275:1132-1136.
40. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W
(1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after
cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression,
and promote axonal regeneration. J Neurosci 17:9583-95.
41. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN (1993) Bcl-2/Bax:
a rheostat that regulates an anti-oxidant pathway and cell death. Semin
Cancer Biol 4:327-332.
42. Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor:
a matter of neuron life and death. Prog Neurobiol 81:179-196.
43. Krum JM, Rosenstein JM (1998) VEGF mRNA and its receptor flt-1 are
expressed in reactive astrocyte following neural grafting and tumor cell
implantion in the adult CNS. Exp Neurol 154:57-65.
44. Kunlin J, Yonghua Z, Yunjuan S, Xiao OM, Lin X, David A (2002) Vascular
endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in
vivo. Proc Natl Acad Sci USA 99:11946-11950.
45. Kwo S, Young W, Decrescito V (1989) Spinal cord sodium, potassium,
calcium, and water concentration changes in rats after graded contusion
injury. J Neurotrauma 6:13-24.
33
46. Lapointe NP, Ung RV, Bergeron M, Cote M, Guertin PA (2006)
Strain-dependent recovery of spontaneous hindlimb movement in spinal cord
transected mice (CD1, C57BL/6, BALB/c) . Behav Neurosci (in press)
47. Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in
early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22:207-215.
48. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997a) Intracellular
adenosine triphosphate (ATP) concentration: a switch in the decision
between apoptosis and necrosis. J Exp Med 185:1481-1486.
49. Leist M, Volbracht C, Kuhnle S, Fava E, Ferrando-May E, Nicotera P (1997b)
Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric
oxide. Mol Med 3:750-764.
50. Leist M, Single B, Naumann H, Fava E, Simon B, Kuhnle S, Nicotera P
(1999) Inhibition of mitochondrial ATP generation by nitric oxide switches
apoptosis to necrosis. Exp Cell Res 249:396-403.
51. Leist M., Jttel M (2001) Four deaths and a funeral: from caspases to
alternative mechanisms. Nat Rev Mol Cell Biol 2:589-598.
52. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A,
Fischer I (1999) Transplants of fibroblasts genetically modified to express
BDNF promote regeneration of adult rat rubrospinal axons and recovery of
forelimb function. J Neurosci 19:4370-4387.
53. Lois C and Alvarez-Buylla A (1993) Proliferating subventricular zone cells in
the adult mammalian forebrain can differentiate into neurons and glia. Proc
Natl Acad Sci USA 90:2074-2077.
54. Lu P, Jones LL, Tuszynski MH (2006) Axon regeneration through scars and
into sites of chronic spinal cord injury. Exp Neurol 203:8-21.
55. Lu K, Liang CL, Chen HJ, Chen SD, HsuHC, Liliang PC, Lin TK, Cho CL
(2004) Injury severity and cell death mechanisms: effects of concomitant
hypovolemic hypotension on spinal cord ischemia-reperfusion in rats. Exp
Neurol 185:120-132.
34
56. Luskin MB (1993) Restricted proliferation and migration of postnatally
generated neurons derived from the forebrain subventricular zone. Neuron
11:173-189.
57. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI,
Choi DW (1999) Transplanted embryonic stem cells survive, differentiate
and promote recovery in injured rat spinal cord. Nat Med 5:1410-1412.
58. McTigue DM, Popovich PG, Morgan TE, Stokes BT (2002) Localization of
transforming growth factor-b1 and receptor mRNA after experimental spinal
cord injury. Exp Neurol 163:220-230.
59. McTigue DM, Tripathi R, Wei P (2006) NG2 colocalizes with axons and is
expressed by a mixed cell population in spinal cord lesions. J Neuropathol
Exp Neurol 65:406-420.
60. Mueller CA, Schluesener HJ, Conrad S, Pietsch T, Schwab JM (2006) Spinal
cord injury-induced expression of the immune-regulatory chemokine
interleukin-16 caused by activated microglia/macrophages and CD8+ cells. J
Neurosurg Spine 4:233-40.
61. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996)
Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A
progenitor cells in the developing rat brain. J Neurosci Res 43:299-314.
62. Papavassiliou E, Gogate N, Proescholdt M, Heiss JD, Walbridge S, Edwards
NA, Oldfield EH, Merrill MJ (1997) Vascular endothelial growth factor
(vascular permeability factor) expression in injured rat brain. J Neurosci Res
49:451-460
63. Putcha GV, Deshmukh M, Johnson EM (1999) Bax translocation is a critical
event in neuronal apoptosis: regulation by neuroprotectants, Bcl-2, and
caspases. J Neurosci 19:7476-7485.
64. Radtke C, Spies M, Sasaki M, Vogt PM, Kocsis JD (2007) Demyelinating
diseases and potential repair strategies. Int J Devl Neurosci 25:149-153.
35
65. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of
hypoxic-ischemic brain damage. Ann Neurol 19:105-111.
66. Sakurai M, Takahashi G, Abe K, Horinouchi T, Itoyama Y, Tabayashi K
(2005) Endoplasmic reticulum stress induced in motoneurons by transient
spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 130:640-645.
67. Savas S, Savas C, Altuntas I, Adiloglu A (2007) The correlation between nitric
oxide and vascular endothelial growth factor in spinal cord injury. Spinal
Cord (in press)
68. Seki T, Hida K, Tada M, Koyanagi I, Iwasaki Y (2003) Role of the bcl-2 gene
after contusive spinal cord injury in mice. Neurosurgery 53:192-198.
69. Shibata M, Murray M, Tessler A, Ljubetic C, Connors T, Saavedra RA (2000)
Single injections of a DNA plasmid that contains the human Bcl-2 gene
prevent loss and atrophy of distinct neuronal populations after spinal cord
injury in adult rats. Neurorehabil Neural Repair 14:319-330.
70. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev
Neurosci 5:146 -156.
71. Skold M, Cullheim S, Hammarberg H, Piehl F, Suneson A, Lake S, Sjogren
A, Walum E, Risling M (2000) Induction of VEGF and VEGF receptors in
the spinal cord after mechanical spinal injury and prostaglandin
administration. Eur J Neurosci 12:3675-3686.
72. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M,
Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW,
Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways
leading to nuclear apoptosis. J Exp Med 192:571-580.
73. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N,
Prevost MC, Alzari PM, Kroemer G (1999a) Mitochondrial release of
caspase-2 and -9 during the apoptotic process. J Exp Med 189:381-394.
74. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM,
Mangion J, Jacotot E, Costantini P, Loeffle M, Larochette N, Goodlett DR,
36
Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999b) Molecular
characterization of mitochondrial apoptosis-inducing factor. Nature 397:
441-446.
75. Tator CH (1991) Review of experimental spinal cord injury with emphasis
on the local and systemic circulatory effects. Neurochirurgie 37:291-302.
76. Tarlov M (1967) Rigidity in man due to spinal interneuron loss. Arch Neurol
6:536-543.
77. Van Harreveld A, Schade JP (1962) Nerve cell destruction by asphyxiation of
the spinal cord. J Neuropathol Exp Neurol 21:410-423.
78. Vaquero J, Zurita M, de Oya S, Coca S (1999) Vascular endothelial
growth/permeability factor in spinal cord injury. J Neurosurg 90:220-223.
79. Waxman SG (1989) Demyelination in spinal cord injury. J Neurol Sci 91:
1-14.
80. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L
(2003) Vascular endothelial growth factor improves functional outcome and
decrease secondary degeneration in experimental spinal cord injury.
Neurosci 120:951-960.
81. Widenfalk J, Lundstromer K, Jubran M, Bren S, Olson L (2001)
Neurotrophic factors and receptors in the immature and adult spinal cord
after mechanical injury or kainic acid. J Neurosci 21:3457-3475.
82. Young W, Koreh I (1986) Potassium and calcium changes in injured spinal
cords. Brain Res 365:42-53.
83. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier
GG, Dawson TM, Dawson VL (2002) Mediation of poly (ADPribose)
polymerase-1-dependent cell death by apoptosis inducing factor. Science 297:
259-263.
84. Zai LJ, Yoo S, Wrathall JR (2005) Increased growth factor expression and cell
proliferation after contusive spinal cord injury. Brain Res 1052:147-155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文