跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳涵栩
研究生(外文):Harn-Shen Chen
論文名稱:熱休克蛋白質和第一型類胰島素生長因子在糖尿病心臟病變所扮演的角色
論文名稱(外文):The Role of Heat Shock Protein and Insulin-like Growth Factor-1 in Diabetic Myocardium
指導教授:王秉訓林幸榮林幸榮引用關係林宏達林宏達引用關係
指導教授(外文):Ping H. WangShing-Jong LinHong-Da Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:116
中文關鍵詞:糖尿病心臟肌肉病變第一型類胰島素生長因子熱休克蛋白質
外文關鍵詞:DiabetesCardiomyopathyInsulin-like growth factor 1Heat shock protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
心臟血管疾病在糖尿病患者身上是很常見的。除了冠狀動脈疾病和高血壓之外,患者也會出現一種沒有大小血管併發症的糖尿病心臟肌肉病變 (Diabetic cardiomyopathy)。有一些變化卻是糖尿病心臟肌肉病變所特有的:第一型類胰島素生長因子(Insulin-like growth factor 1) 和熱休克蛋白質 (Heat shock protein)的表現就是其中之一。
首先於第一章中,我回顧文獻中關於第一型類胰島素生長因子以及熱休克蛋白質在心臟保護功能的報告。在糖尿病動物的心臟中,第一型類胰島素生長因子接受體的表現明顯地減少;這種變化跟缺血性心臟肌肉病變以及肥厚性心臟肌肉病變的表現正好相反。降低第一型類胰島素生長因子的表現,會降低心臟在缺氧或缺血時自我保護的功能,可能在引起糖尿病心臟肌肉病變中扮演著重要的角色。另外一個特殊的變化是熱休克蛋白質的表現:熱休克蛋白質在細胞內扮演著管家的角色,來調節細胞內訊號的傳遞,進而在心肌缺氧或缺血時保護心臟。
雖然這些發現顯示,第一型類胰島素生長因子和熱休克蛋白質表現的下降可以導致糖尿病心臟肌肉病變的形成,但是糖尿病如何造成這些蛋白質表現下降的機轉並不清楚。在本篇論文中,我提出一個假說「在糖尿病的心臟中,熱休克蛋白質的表現下降,因而造成第一型類胰島素生長因子系統以及其細胞內訊號傳遞的下降,是形成糖尿病心臟肌肉病變的主要原因之一」。為了證明假說,設計了一系列的實驗來評估糖尿病如何地來調控熱休克蛋白質在心臟中的表現,以及第一型類胰島素生長因子在心臟細胞內的訊號傳遞。在第二章中簡單地陳述我的實驗設計。
在第三章中,先探討心臟中熱休克蛋白質60和第一型類胰島素接受體及其細胞內訊號傳遞在糖尿病的變化,進而探討糖尿病是透過什麼機轉來產生這些變化。心臟中熱休克性蛋白質60和第一型類胰島素生長因子接受體,在大白鼠被誘導成糖尿病後的第四天就開始下降。而第一型類胰島素生長因子在心臟細胞內訊號的傳遞也都明顯地減少。將心臟細胞培養在不同濃度的胰島素及葡萄糖中,心臟細胞內熱休克蛋白質60的表現隨著胰島素濃度的升高而增加,但卻不受葡萄糖濃度的影響。我們又分別使用胰島素和Phlorizin來治療糖尿病大白鼠的血糖:經過胰島素的治療,心臟內熱休克蛋白質60和第一型類胰島素接受體的表現都恢復到正常;但是以Phlorizin治療的大白鼠則無法恢復到正常。這些資料顯示,胰島素的缺乏是造成糖尿病心臟中熱休克蛋白質60表現減少最主要的原因。
在第四章中,首先探討心臟中熱休克蛋白質70家族在糖尿病的變化,然後再研究引起這些變化的機轉。在大白鼠被誘導成糖尿病之後,常態型的熱休克蛋白質70就隨著糖尿病的過程而減少。跟熱休克蛋白質60不一樣的地方是:熱休克蛋白質70並不會調節第一型類胰島素生長因子在心臟細胞內訊號的傳遞。在細胞培養中,胰島素的濃度可調控常態型的熱休克蛋白質70的表現,但不會影響誘導型熱休克蛋白質70的表現。糖尿病的大白鼠經過胰島素的治療之後,可以恢復心臟中熱休克蛋白質70的表現;但是經過Phlorizin治療的糖尿病大白鼠,其心臟中熱休克蛋白質的表現仍然比控制組低。我們的資料顯示,心臟中誘導型的熱休克蛋白質70的表現並不受糖尿病的影響;而胰島素可以調節心臟中常態型的熱休克蛋白質70的表現。
綜合以上資料而言,糖尿病是因為胰島素缺乏而造成心臟中熱休克蛋白質60和常態型熱休克蛋白質70的表現減少的原因。而心臟中熱休克蛋白質60減少,進而降低第一型類胰島素生長因子細胞內訊號的傳遞則是形成糖尿病心臟肌肉病變主要的原因之一。
Abnormalities of cardiovascular systems are common in diabetic patients, and the consequences of cardiac disease in diabetes are devastating. In addition to coronary artery disease and hypertension, diabetic patients often have evidence of a cardiomyopathy that may occur without apparent microvascular or macrovascular diseases. Although a number of biochemical and physiological changes had been described in diabetic myocardium, most are not specific to diabetic cardiomyopathy because similar biochemical abnormalities were found in other forms of cardiomyopathy. However, there are few changes appear to be quite specific for diabetic cardiomyopathy. Two of these changes are the expression of IGF-1 receptor and heat shock proteins.
First, I reviewed the cardioprotection effects of IGF-1 and heat shock protein in the chapter one. In this chapter we also explored the changes of IGF-1 and heat shock protein during the diabetic status. The expression of IGF-1 receptor in myocardium is reduced in animal models of diabetes. This is different from ischemic cardiomyopathy and hypertrophic cardiomyopathy, which are associated with increased IGF-1 receptor expression in myocardium. IGF-1 receptor signaling protects myocardium from injuries through suppression of oxidative stress, inhibition of cardiac muscle apoptosis, enhancement of contractile function, and modulation of cardiac specific genes. Reduced expression of IGF-1 receptor can lead to decreased myocardial protection during myocardial ischemia and thus may play a fundamental role during the development of diabetic cardiomyopathy. The other specific changes are heat shock protein. Hsps are chaperone molecules that may modulate intracellular signaling and play cardiac protective roles during myocardial injuries. Recent data have shown antiapoptotic effects of Hsp60 in cardiac muscle and the expression of various heat shock proteins typically increases upon myocardial stress. The 70 kD family of heat shock proteins is involved in the cellular protection during stress in various tissues, and the expression of Hsp70 was dramatically induced after myocardial ischemic injuries.
Although these findings suggest that reduced Hsp and IGF-1 is a new paradigm contributing to the development of diabetic cardiomyopathy, the mechanism through which diabetes downregulates cardiac Hsp and IGF-1 is not known. In this thesis, I address the hypothesis that reduced heat shock protein expression in diabetic myocardium contributes to the development of diabetic cardiomyopathy, and that the protective effect of Hsp on cardiac muscle involves modulating of IGF-1 receptor signaling. I described these experiments in chapter 2, which were carried out to determine how diabetes alters myocardial Hsp and IGF-1 receptor signaling and to dissect the independent effects of hyperglycemia and insulin deficiency on Hsp in cardiac muscle.
In chapter 3, we investigated the changes of Hsp60 and IGF-1 receptor signaling in the diabetic myocardium and studied how diabetes modulates Hsp60 and IGF-1 receptor in diabetic myocardium. In the streptozotocin (STZ)-induced diabetic rat, downregulation of Hsp60 and IGF-1 receptor occurred 4 days after induction of diabetes. IGF-1 activation of IGF-1 receptor, Mek, and Akt were reduced accordingly in the diabetic myocardium. Incubating cardiomyocytes with insulin was associated with dose-dependent increase of Hsp60 protein. In contrast, the abundance of Hsp60 was not affected by high concentration of glucose in these cells. We used insulin or phlorizin to normalize blood glucose in diabetic rats. In the phlorizin-treated diabetic rats, myocardial Hsp60 was lower than that of the normal controls. In contrast, insulin treatment normalized myocardial Hsp60 in the diabetic rats. These findings suggest that insulin deficiency is a novel mechanism that leads to downregulation of Hsp60 in diabetic muscle tissues.
The study described in chapter 4 was carried out to define the changes of 70 kD heat shock protein family in the myocardium of streptozotocin-diabetes rats, and to explore the mechanisms through which diabetes alters the abundance of Hsp70/Hsc70 in cardiac muscle. In the diabetic myocardium, the abundance of Hsc70 was significantly reduced in diabetic myocardium and the abundance of Hsp70 was low in cardiac muscle and was not visibly induced in the diabetic myocardium. Unlike Hsp60, Hsp70 did not augment IGF-1 receptor signaling in cardiac muscle cells. In cultured cardiomyocytes, insulin directly increased the abundance of Hsc70 whereas insulin could not modulate Hsp70. Treating diabetic rats with insulin restored myocardial Hsc70 level, but phlorizin treatment failed to restore myocardial Hsc70. These in vivo studies confirmed that down-regulation of Hsc70 in diabetic myocardium was secondary to insulin deficiency. Our data showed that, in contrary to other forms of cardiomyopathy, the inducible Hsp70 was not induced in diabetic myocardium while insulin played a major role in maintaining adequate expression of Hsc70 in cardiac muscle.
In conclusion, insulin deficiency is a novel mechanism that leads to downregulation of Hsp60 in diabetic muscle tissues. The development of diabetic cardiomyopathy might have involved downregulation of Hsp60 and subsequent reduction of IGF-1 receptor signaling. Our data also showed that the inducible Hsp70 was not induced in diabetes myocardium while insulin played a major role in maintaining adequate expression of Hsc70 in cardiac muscle.
致 謝 2
中文摘要 3 – 4
英文摘要 5 – 7
中英文對照及縮寫表 8 – 12
第一章 糖尿病的心臟肌肉病變和熱休克蛋白質以及第一型類胰島素生長因子的關係 13–24
第二章 實驗設計及初步的資料 25–36
第三章 糖尿病心臟因為胰島素的缺乏而導致熱休克蛋白質60的減少進而影響第一型類胰島素生長因子在細胞內的訊號傳遞 37–63
第四章 糖尿病心臟的熱休克蛋白質70的減少是因為胰島素的缺乏所引起 64–91
第五章 結論及未來研究的方向 92–99
參考文獻 100–115
發表之論文相關著作 116
1. Grossman E, Messerli FH. Diabetic and hypertensive heart disease. Ann Internal Med 1996; 125: 304-310.
2. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001; 37: 1053-1059.
3. Fein FS. Diabetic cardiomyopathy. Diabetes Care 1990; 13: 1169-1179.
4. Joffe II, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP, Douglas PS. Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with Doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol 1999; 34: 2111-2119.
5. Nesto RW, Zarich SW, Jacoby RM, Kamalesh M. Heart disease in diabetes. In Joslin’s Diabetes Mellitus, Kahn and Weir ed., 13th edition, Lea & Febiger, Philadelphia, 1994.
6. Wang PH, Almahfouz A, Giorgino F, McCowen KC, Smith RJ. In vivo insulin signaling in the myocardium of streptozotocin-diabetic rats: opposite effects of diabetes on insulin stimulation of glycogen synthase and c-Fos. Endocrinology 1999; 140: 1141-1150.
7. Jain SK; Levine SN. Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Rad Biol Med 1995; 18: 337-341.
8. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 2002; 51: 1166-1171.
9. Malhotra A, Reich D, Reich D, Nakouzi A, Sanghi V, Geenen DL, Buttrick PM. Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 1997; 81: 1027-1033.
10. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 2001; 50: 2363-2375.
11. Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabet Med 2001; 18: 945-959.
12. Ren J, Samson WK, Sowers JR. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol. 1999; 31: 2049-2061.
13. Fazio S, Palmieri EA, Biondi B, Cittadini A, Sacca L. The role of the GH-IGF-I axis in the regulation of myocardial growth: from experimental models to human evidence. Eur J Endocrinol 2000; 142: 211-216.
14. Shan YX, Yang TL, Mestril R, Wang PH. Hsp10 and Hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy. J Biol Chem 2003; 278: 45492-45498.
15. Chen HS, Shan XY, Yang TL, Lin HD, Chen JW, Lin SJ, Wang PH. Insulin deficiency down-regulated Hsp60 and IGF-1 Receptor signaling in diabetic myocardium. Diabetes 2005; 54: 175-181.
16. Tricoli JV, Ball LB, Scott J, Bell GI, Shows TB. Localization of insulin-like growth factor genes to human chromosomes 11 and 12. Nature 1984: 310: 784-786.
17. Taylor BA, Grieco D. Localization of the gene encoding insulin-like growth factor I on mouse chromosome 10. Cell 1991; 56: 57-58.
18. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and celluar aspects of the insulin-likegrowth factor I receptor. Endocrine Rev 1995; 16:143-163.
19. Werner H, Woloscek M, Adamo M et al. Developmental regulation of the rat insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 1989; 86: 7451-7455.
20. Sklar MM, Kiess W, Thomas CL, Nissley SP. Developmental expression of the tissue insulin-like growth factor II mannose-6-phosphate receptor in the rat: measurement by quantitative immunoblotting. J Biol Chem 1989; 264: 733-738.
21. Guler HP, Zapf J, Foesch ER. Short term metabolic effects of recombinant human Insulin-like growth factors I in healthy adults. New Engl J Med 1987; 317: 137-140.
22. Bier DM. Growth hormone and insulin-like growth factor I: Nutritional pathophysiology and therapeutic potential. Acta Paediatr Scand Suppl 1991; 374: 199-128.
23. Foncea R, Andersson M, Ketterman A, Blakesley V, Sapag-Hagart M, Sugden PH, LeRoith Derek, Lavandero S. Insulin-like Growth Factor-I Rapidly Activates Multiple Signal Transduction Pathways in Cultured Rat Cardiac Myocytes. J Biol Chem 1997; 272: 19115-19124.
24. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-241.
25. Cheng HL, Feldman EL. Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor I. J Biol Chem 1998; 273: 14560-14565.
26. Attalla H, Westberg JA, Andersson LC, Adlercreutz H, Makela TP. 2-Methoxyestradiol-induced phophorylation of bcl-2: uncoupling from JNK/SAPK activation. Biochem Biophys Res Commun 1998; 247: 616-619.
27. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, Arkinstall S. Bcl-2 undergoes phosphorylation by c-Jun terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac 1. J Biol Chem 1997; 272: 25238-25242.
28. Spallarossa P, Brunelli C, Minuto F, Caruso D, Battistini M & Caponnetto S. Insulin-like growth factor-I and angiographically documented coronary artery disease. Am J Cardiol 1996; 77: 200–202.
29. Lee WL, Chen JW, Ting CT, Lin SJ & Wang PH. Changes of the insulin-like growth factor I system during acute myocardial infarction: implications on left ventricular remodeling. J Clin Endocrinol Metab 1999; 84: 1575–1581.
30. Friberg L, Werner S, Eggertsen G & Ahnve S. Growth hormone and insulin-like growth factor-I in acute myocardial infarction. Eur Heart J 2000; 21: 1547–1554.
31. Reeves I, Abribat T, Laramee P, Jasmin G & Brazeau P. Age-related serum level of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction. Growth Horm IGF Res 2000; 10: 78–84.
32. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002; 106: 939-944.
33. Vasan RS, Sullivan LM, D’AgostinoRB, Roubenoff R, Harris T, Sawyer DB, Levy D, Wilson PWF. Serum insulin-like growth 1 and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framinghan heart study. Ann Intern Med 2003; 139: 642-648.
34. Friehs I, Stamm C, Cao-Danh H, McGowan FX & del Nido PJ. Insulin-like growth factor-I improves postischemic recovery in hypertrophied hearts. Ann Thorac Surg 2001; 72: 1650–1656.
35. Cittadini A, Ishiguro Y, Stromer H, Spindler M, Moses AC & Clark R. Insulin-like growth factor-I but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Circ Res 1998; 83: 50–59.
36. Donath MY, Sutsch G, Yan XW, Piva B, Brunner HP & Glatz Y. Acute cardiovascular effects of insulin-like growth factor I in patients with chronic heart failure. J Clin Endocrinol Metab 1998; 83: 3177–3183.
37. Conti E, Andreotti F, Sciahbasi A, Riccardi P, Marra G & Menini E. Markedly reduced insulin-like growth factor-I in the acute phase of myocardial infarction. J Am Coll Cardiol 2001; 38: 26–32.
38. Li B, Setoguchi M, Wang X, Andreoli AM, Leri A & Malhotra A. Insulin-like growth factor-I attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res 1999; 84: 1007–1019.
39. Li Q, Li B, Wang X, Leri A, Jana K & Liu Y. Overexpression of insulin-like growth factor I in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997; 100: 1991–1999.
40. Wang L, Ma W, Markovich R, Chen JW & Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998; 83: 516–522.
41. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG & Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest 1994; 93: 1266–1274.
42. Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S & Medow MS. IGF-I overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001; 50: 1414–1424.
43. Cittadini A, Stromer H, Katz SE, Clark R, Moses AC, Morgan JP, Douglas PS. Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat: a combined in vivo and in vitro evaluation. Circulation 1996; 93: 800-809.
44. Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR & Ross J. Insulin-like growth factor-I enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest 1995; 95: 619–627.
45. Jin H, Yang R, Gillett N, Clark RG, Ko A & Paoni NF. Beneficial effects of growth hormone and insulin-like growth factor-I in experimental heart failure in rats treated with chronic ACE inhibition. J Cardiovasc Pharmacol 1995; 26: 420–425.
46. Broglio F, Fubini A, Morello M, Arvat E, Aimaretti G & Gianotti L. Activity of GH/IGF-I axis in patients with dilated cardiomyopathy. Clin Endocrinol (Oxf) 1999; 50: 417–430.
47. Ritossa F. A new puffing pattern induced and temperature shock and DNP in Drosophila. Experientia 1962; 18: 571-573.
48. Parsell DA, Lidquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damage proteins. Annu Rev Biochem 1993; 27: 437-496.
49. Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science 1993; 259: 1409-1410.
50. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 2002; 22: 1547-1559.
51. Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res 2001; 51: 637-646.
52. Collins P, Hightower LE. Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 1982; 44: 703-707.
53. Plesset J, Palm C, Mclaughlin CS. Induction of heat shock proteins and thermo-tolerance by ethanol in Saccharomyces cerevisiae. Biochem. Biophys Res Commun 1982; 108: 1340-1345.
54. Li GC. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol 1983; 115: 116-122.
55. Norton PM, Latchman DS. Levels of the 90 kd heat shock protein and resistance to glucocorticoid mediated cell killing in a range of human and murine lymphocyte cell lines. J Steroid Biochem 1989; 33: 149-154.
56. Li GC, Lazlo A. Amino acid analogues while inducing heat shock protein sensitive cells to thermal damage. J Cell Physiol 1985; 122: 91-97.
57. Polla BS. A role of heat shock proteins in inflammation? Immunol Today 1988; 9: 134-137.
58. Beckmann RP, Mizzen LE, Welch WJ. Interaction of Hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 1990; 248: 850-854.
59. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperons that modulate mitochondrial cell death pathway. Biochem Biophys Res Commun 2003; 304: 505-512.
60. Luders J, Demand J, Papp O, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem. 2000; 18; 275: 4613-7.
61. Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003; 300: 1142-1145.
62. Tytell M, Hooper PL. Heat shock proteins: new keys to the development of cytoprotective therapies. Emerging Therapeutic Targets. 2001; 5: 267-287.
63. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC. Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma. 2002; 52: 611-617; discussion 617.
64. Hooper PL. Diabetes, nitric oxide, and heat shock proteins. Diabetes Care 2003; 26: 951-952.
65. Hooper PL, Hooper JJ. Loss of defense against stress: diabetes and heat shock protein. Diabetes Technol Ther 2005; 7: 204-208.
66. Taylor R. Causation of type 2 diabetes -- the Gordian knot unravels. N Engl J Med. 2004; 350: 639-641.
67. Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J, Roy S, Hanninen O, Sen CK. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol. 2004; 97: 605-11.
68. Bruce CR, Carey AL, Hawley JA, Febbraio MA. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes. 2003; 52: 2338-2345.
69. Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, Koranyi L. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 2002; 51: 1102-9.
70. Housby JN, Cahill CM, Chu B, Prevelige R, Bickford K, Stevenson MA, Calderwood SK. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 1999; 11: 347-358.
71. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820.
72. Tong P, Thomas T, Berrish T, Humphriss D, Barriocanal L, Stewart M, Walker M, Wilkinson R, Alberti KG. Cell membrane dynamics and insulin resistance in non-insulin-dependent diabetes mellitus. Lancet 1995; 345: 357-358.
73. Currie RW. Effects of ischemia and reperfusion temperature on the synthesis of stress-induced (heat shock) proteins in isolated and perfused rat hearts. J Mol Cell Cardiol 1987; 19: 795–808.
74. Dillmann WH, Mehta HB, Barrieux A, Guth BD, Neeley WE, Ross JJ. Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to heat-shock/stress protein 71. Circ Res 1986; 59: 110–114.
75. Yellon DM, Iliodromitts E, Latchnman DS, Van Winkle DM, Downney JM, Williams FM, Williams TJ. Whole body heat stress fails to limit infarct size in the reperfused rabbit heart. Cardiovasc Res 1992; 26: 342–346.
76. Currie RW. Protein synthesis in perfused rat hearts after in vivo hyperthermia and in vitro cold ischemia. Biochem Cell Biol 1988; 66: 13–19.
77. Donnelly TJ, Sievers RE, Vissern FL, Welch WJ, Wolfe CL. Heat-shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion. Circulation 1991; 85: 769–778.
78. Marber MS, Walker JM, Latcheman DS, Yellon DM. Repetitive ischaemia and heat stress results in delayed myocardial protection. J Mol Cell Cardiol 1993; 25: S55.
79. Hutter JJ, Mestril R, Tam EK, Sievers RE, Dillmann WH, Wolfe CL. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996; 94: 1408-11.
80. Heads RJ, Latcheman DS, Yellon DM. Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress. J Mol Cell Cardiol 1994; 26: 695–699.
81. Mestril R, Chi SH, Sayen MR, O’reilly K, Dillmann WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 1994; 93: 759–767.
82. Suzuki K, Sawa Y, Kaneda Y, Ichikawa H, Shirakura R, Matsuda H. In vivo gene transfer with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 1997; 99: 1645–1650.
83. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446–1456.
84. Plumier JCL, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 1995; 95: 1854–1860.
85. Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, Covell JW, Dillmann WH. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998; 101: 855-62.
86. Kirchhoff, SR, Gupta S, Knowlton AA: Cytosolic Heat Shock Protein 60, Apoptosis, and Myocardial Injury. Circulation 2000; 105: 2899-2904.
87. Lau S, Patnaik N, Sayen MR, Mestril R. Simultaneous Overexpression of Two Stress Proteins in Rat Cardiomyocytes and Myogenic Cells Confers Protection Against Ischemia-Induced Injury. Circulation 1997; 96: 2287-2294.
88. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH. Combined and Individual Mitochondrial HSP60 and HSP10 Expression in Cardiac Myocytes Protects Mitochondrial Function and Prevents Apoptotic Cell Deaths Induced by Simulated Ischemia-Reoxygenation. Circulation 2001; 103: 1787-1792.
89. Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH. Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 2003; 35: 1135-1143.
90. American Diabetes Association. Standards of Medical Care in Diabetes–2006. Diabetes Care 2006; 29: S4-42.
91. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 2001; 81:1461-1497.
92. Wang PH. Roads to survival: insulin-like growth factor-I signaling pathways in cardiac muscle. Circ Res 2001; 88: 552–554.
93. Lee W, Chen J, Ting C, Ishiwata T, Lin S, Korc M, Wang PH. Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in established canine cardiomyopathy. Endocrinology 1999; 140: 4831-4840.
94. Jaffe II, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP, Douglas PS: Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with Doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol 1999; 34: 2111-2119.
95. Schafler AE, Kirmanoglou K, Balbach J, Pecher P, Hannekum A, Schumacher B. The expression of heat shock protein 60 in myocardium of patients with chronic atrial fibrillation. Basic Res Cardiol 2002; 97: 258-261.
96. Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC: Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem 2002; 277: 10912-10921.
97. Li G, Li RK, Mickle DA, Weisel RD, Merante F, Ball WT, Christakis GT, Cusimano RJ, Williams WG. Elevated insulin-like growth factor-I and transforming growth factor-beta 1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomyopathy. A possible mechanism. Circulation 1998; 98 (Suppl): II144-49.
98. Cheng W, Reiss K, Li P, Chun MJ, Kajstura J, Olivetti G, Anversa P. Aging does not affect the activation of the myocyte insulin-like growth factor-1 autocrine system after infarction and ventricular failure in Fischer 344 rats. Circ Res 1996; 78: 536-546.
99. Sakai J, Ishikawa H, Kojima S, Satoh H, Yamamoto S, Kanaoka M. Proteomic analysis of rat heart in ischemia and ischemia-reperfusion using fluorescence two-dimensional difference gel electrophoresis. Proteomics 2003; 3: 1318-24.
100. Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ: IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999; 48: 1638-1644.
101. Cornelussen RN, Vanagt WY, Prinzen FW, Snoeckx LH. Proteins involved in salvage of the myocardium. Adv Exp Med Biol 2003; 543: 277-291.
102. Delogu G, Signore M, Mechelli A, Famularo G. Heat shock proteins and their role in heart injury. Curr Opin Crit Care 2002; 8: 411-6.
103. Lepore DA, Knight KR, Anderson RL, Morrison WA. Role of priming stresses and Hsp70 in protection from ischemia-reperfusion injury in cardiac and skeletal muscle. Cell Stress Chaperones 2001; 6: 93-96.
104. Erbse A, Mayer MP, Bukau B. Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 2004; 32: 617-621.
105. Giffard RG, Yenari MA. Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 2004; 16: 53-61.
106. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G. HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2003; 2: 579-584.
107. Mestril, R, Giordano FJ, Conde AG, and Dillmann WH. Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol 1996; 28: 2351-2358.
108. Jayakumar J, Suzuki K, Sammut IA, Smolenski RT, Khan M, Latif N, Abunasra H, Murtuza B, Amrani M, Yacoub MH. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation 2001; 104(12 Suppl 1): I303-307.
109. Beck SC, De Maio A. Stabilization of protein synthesis in thermotolerant cells during heat shock. Association of heat shock protein-72 with ribosomal subunits of polysomes. J Biol Chem 1994; 269: 21803-21811.
110. Arispe N, Doh M, De Maio A. Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 2002; 7: 330-338.
111. Rafiee P, Shi Y, Pritchard KA Jr, Ogawa H, Eis AL, Komorowski RA, Fitzpatrick CM, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Baker JE. Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: role of protein kinases. J Biol Chem 2003; 278: 43636-43644.
112. Tanonaka K, Yoshida H, Toga W, Furuhama K, Takeo S. Myocardial heat shock proteins during the development of heart failure. Biochem Biophys Res Commun 2001; 283: 520-525.
113. Chong KY, Lai CC, Lille S, Chang C, Su CY. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol 1998; 30: 599-608.
114. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000; 20: 7146-7159.
115. Cohen DL, Neil HA, Thorogood M & Mann JI. A population-based study of the incidence of complications associated with type 2 diabetes in the elderly. Diabet Med 1991; 8: 928–933.
116. McMurtry AL, Cho K, Young LJ, Nelson CF, Greenhalgh DG. Expression of HSP70 in healing wounds of diabetic and nondiabetic mice. J Surg Res 1999; 86: 36-41.
117. Burkart V, Liu H, Bellmann K, Wissing D, Jaattela M, Cavallo MG, Pozzilli P, Briviba K, Kolb H. Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem 2000; 275: 19521-19528.
118. Chen HS, Jia J, Su HF, Lin HD, Chen JW, Lin SJ, Yang JY, Lai HC, Mestril R, Wang PH. Downregulation of the constitutively expressed Hsc70 in diabetic myocardium is mediated by insulin deficiency. J Endocrinol 2006; 190: 435-442.
119. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2003; 26: 3160-3167.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top