跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴瑋恬
研究生(外文):Wei-Tien Tai
論文名稱:利用雙報導基因分子影像及脂肪酸合成酶為標的於攝護腺癌動物模式(LNCaP/tk-luc)之治療評估
論文名稱(外文):Targeted Therapeutic Evaluation on Inhibition of Fatty Acid Synthase in a Human Prostate CarcinomLNCaP/tk-luc Bearing Animal Model with Molecular Imaginga
指導教授:黃正仲黃正仲引用關係
指導教授(外文):Jeng-Jong Hwang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:53
中文關鍵詞:LNCaP/tk-luc脂肪酸合成酶C75小片段核酸干擾素分子影像
外文關鍵詞:LNCaP/tk-lucfatty acid synthaseC75RNAimolecular-imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脂肪酸合成酶 (fatty acid synthase, FAS) 為一個270 kDa,具有七個催化活性的巨大酵素複合體。在脂肪酸合成的代謝路徑上扮演十分重要的角色;其主使著由malonyl-coA轉為palmitate的主要催化反應並進一步促成長鏈脂肪酸之合成。近幾年發現,在眾多人類腫瘤細胞中具有高度表現的脂肪酸合成酶;包含乳癌細胞、攝護腺癌細胞、大腸直腸癌細胞及肺癌細胞。本篇研究對象為人類攝護腺癌(LNCaP)中高度表現的脂肪酸合成酶,嘗試以FAS作為抑制腫瘤增生之標的。

據研究表示,對比攝護腺癌細胞及正常細胞,脂肪酸合成酶若同時於蛋白質及mRNA層次有高達四倍以上的過度表現(overexpression)時,其復發機率與病理分級上皆偏高;另一方面,在高度表現脂肪酸合成酶的攝護腺癌病患中,發生骨轉移之潛在危險性也較高。本篇研究應用脂肪酸合成酶之抑制劑(C75),針對FAS於攝護腺癌細胞之高表現作抑制效應評估。在細胞實驗中,可見脂肪酸合成酶之抑制劑隨時間對細胞具有相當程度的毒殺效應;分析其對於細胞週期之影響,C75造成大量細胞停頓於G1期,而使進入合成期之細胞銳減。近一步,我們以雙報導基因(tk-luc)建立LNCaP/ tk-luc人類攝護腺癌小鼠模式;利用雙報導基因之影像系統,作為治療效益之評估平台。在單次給予C75 30 mg/kg/week及分次給予15 mgx2/kg/week的兩治療組別中,皆可見腫瘤生長受到明顯抑制,且動物體重的變異並不顯著。在非侵入式生物冷光影像及加碼閃爍攝影術中,對比給予5% DMSO的控制組老鼠,亦可見顯著的腫瘤生長抑制。應用同ㄧ活體實驗平台,給予針對FAS mRNA的特異小片段核酸干擾素siRNA(1.4 mg/kg/
once two days)亦可見顯著抑制效應;在兩週的療程裡,siRNA之療效更優於FAS抑制劑C75。

攝護腺癌細胞較一般癌症細胞不同,其對於脂肪之能量需求較醣解作用大。本篇研究旨在阻斷其主能量來源,以達到抑制腫瘤生長之目的。脂肪酸合成酶之抑制劑C75,不僅在細胞實驗中對細胞具毒殺效應;應用於動物模式時亦可見腫瘤增生之受限。本研究以先進靈敏之多種非侵入式分子基因影像,預見以脂肪酸合成酶於攝護腺癌標的治療之將來。
Fatty acid synthase (FAS), with ability of de novo fatty acid synthesis, is highly expressed in most human cancers, including prostate carcinoma. FAS is overexpressed at both mRNA and protein levels in prostate carcinoma associated with a 4-fold risk of disease recurrence and higher stage. The high-level FAS expression in patients with prostate cancers was also found with high risk in bone metastases. As a novel potential therapeutic target, inhibition of FAS could arrest cell cycle and trigger apoptosis rapidly, implying the reliance of cancer cell survival on FAS activity. In this study, we used the FAS inhibitor, C75, manifest the inhibition effect of endogenous fatty acid metabolism in a human prostate carcinoma LNCaP/tk-luc cells both in vitro and in vivo. Multimodalities of molecular imaging were used to demonstrate the inhibition effects of FAS in a LNCaP-tk/luc bearing mouse model, which constitutively expresses herpes simplex virus type-1 thymidine kinase (HSV1-tk) and luciferase (luc) genes. Bioluminescent imaging (BLI) and nuclear imaging (gamma scintigraphy, PET and autoradiography) were used to monitor tumor progression and metastasis spreading.

LNCaP-tk/luc cells were implanted subcutaneously into NOD/SCID mice. Animals were i.p. injected with high-dose C75 (total 120 mg/kg, i.e. 30 mg/kg once a week or 15 mg/kg twice a week for 4 weeks) or FAS sequence-specific siRNA (1.4 mg/kg/once two days). The results showed that the intensity levels of BLI from in vivo and ex vivo post treatments were well correlated to the tumor growth inhibition, and were further confirmed by histopathology. In conclusion, the targeted therapy using enzyme inhibitor, such as C75, or siRNA for mRNA knockdown of specific protein could be explored using reporter genes combined with multimodalities of molecular imaging.
1.Abstract -------------------------------- p.3
2.Abstract in Chinese --------------------- p.4
3.Study Aim ------------------------------ p.5
4.Introduction --------------------------- p.6
5.Materials and Methods ------------------- p.13
6.Results --------------------------------- p.21
7.Discussion ------------------------------ p.28
8.Conclusions------------------------------- p.32
9.References ------------------------------ p.33
10.Figures -------------------------------- p.37
1.Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000;16(3):202-208.

2.Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med 2003;349(4):366-381.

3.Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006;9(4):358-365.

4.Pizer ES, Pflug BR, Bova GS, Han WF, Udan MS, Nelson JB. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 2001;47(2):102-110.

5.Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 2006;66(12):5977-5980.

6.Mobbs CV, Makimura H. Block the FAS, lose the fat. Nat Med 2002;8(4):335-336.

7.Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000;288(5475):2379-2381.

8.Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 2004;91(1):47-53.

9.Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 2005;24(1):39-46.

10.Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 2000;97(7):3450-3454.

11.Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, Mohinta S, Watabe M, Chalfant C, Watabe K. Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 2006;66(11):5934-5940.

12.Drake JM, Gabriel CL, Henry MD. Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 2005;22(8):674-684.

13.Lupu R, Menendez JA. Targeting fatty acid synthase in breast and endometrial cancer: An alternative to selective estrogen receptor modulators? Endocrinology 2006;147(9):4056-4066.

14.Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A, Testa JR. Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 2005;24(22):3574-3582.

15.Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF. Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 1998;58(20):4611-4615.

16.Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003;4(3):209-221.

17.Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T, Contag PR. Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 2003;20(8):733-744.

18.Gelovani Tjuvajev J, Blasberg RG. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 2003;3(4):327-332.

19.Menendez JA, Vellon L, Oza BP, Lupu R. Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her-2/neu oncogene. J Cell Biochem 2005;94(5):857-863.

20.Iyer M, Salazar FB, Lewis X, Zhang L, Wu L, Carey M, Gambhir SS. Non-invasive imaging of a transgenic mouse model using a prostate-specific two-step transcriptional amplification strategy. Transgenic Res 2005;14(1):47-55.

21.Blasberg RG, Tjuvajev JG. Molecular-genetic imaging: current and future perspectives. J Clin Invest 2003;111(11):1620-1629.

22.Gross S, Piwnica-Worms D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 2005;7(1):5-15.

23.Deng WP, Wu CC, Lee CC, Yang WK, Wang HE, Liu RS, Wei HJ, Gelovani JG, Hwang JJ, Yang DM, Fu YK, Wu CW. Serial in vivo imaging of the lung metastases model and gene therapy using HSV1-tk and ganciclovir. J Nucl Med 2006;47(5):877-884.

24.Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 2005;65(15):6719-6725.

25.Menendez JA, Vellon L, Colomer R, Lupu R. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer 2005;115(1):19-35.

26.Zhao W, Kridel S, Thorburn A, Kooshki M, Little J, Hebbar S, Robbins M. Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 2006;95(7):869-878.

27.Aigner A. Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo. J Biomed Biotechnol 2006;2006(4):71659.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top