跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃馨仙
研究生(外文):Hsin Hsien
論文名稱:奈米釩鈦氧化物氣凝膠應用於光電轉換儲能之研究
論文名稱(外文):Nanostructured vanadium-titanium oxide aerogels for solar energy conversion and storage
指導教授:王健聰王健聰引用關係
指導教授(外文):Chien-Tsung Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:能量儲存光電化學氣凝膠氧化釩氧化鈦
外文關鍵詞:Vanadium oxideTitanium oxidePhotoelectrochemistryAerogelsEnergy Storage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
陶瓷氧化物半導體材料應用於太陽光電研究獲得廣大的注意。然而,半導體經光激發產生的電子與電洞容易發生再結合作用,導致光電轉換效率降低。本研究嘗試導入一半導體材料以儲存光電子,期能建立光功能充電元件。
本研究使用的氧化物半導體材料是經由溶膠-凝膠化學和超臨界流體程序製備,利用場發射掃瞄式電子顯微鏡、傅立葉紅外光譜儀、X-射線粉末繞射儀以及X-射線光電子能譜儀鑑定結構特徵,藉由UV-Vis擴散反射式光譜儀分析光學性質並得以計算能隙。光電化學實驗是在濕式三電極電化學反應槽進行,在室溫下以紫外光為照射光源,並以恆電位電流儀量測電流及電位,利用光催化反應啟動光電能轉換。研究參數包括光電能轉換、光強度效應、光氧化劑效應,循環穩定性、電解質效應及光充電儲能特性之研究。
TiO2氣凝膠的晶型為anatase,粒徑約10-20 nm。V2O5氣凝膠的晶型為Shcherbinbinaite,其粉體是由100-200 nm微粒形成的2 μm團聚體。TiO2膜電極經紫外光照射的光電轉換效率達31%,光氧化劑與電洞反應提升此效率。循環伏安實驗顯示V2O5具有電荷儲存的特性。TiO2/V2O5複合體不僅具有光充電能力而且相較於單一氧化物有更高的放電容量顯示V2O5有光電子儲存能力,此放電容量則因溶解氧而大幅降低。本研究提出相關電荷分離與電荷累積的機制。TiO2半導體的光電子可經由其導帶移轉到V2O5的導帶,進行光充電儲能作用。
Ceramic oxide semiconductors have attracted a great deal of attention in many photoelectrochemical applications. Electrons are excited to the conduction band of the semiconductor under appropriate light irradiation, and holes are left in the valence band. However, the electron-hole recombination in induces a decrease photo-to-electron conversion efficiency reduction. The work attempts to use another semiconductor material for the storage of photoelectrons so as to design photo functional chargeable systems.
Semiconductor materials used in this work were prepared by sol-gel chemistry and supercritical drying, and evaluated for energy conversion and storage in a photoelectrochemical process. Their structural properties were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometer(FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their optical properties were characterized by diffuse reflection spectroscopy (DRS) and the band gap energy was calculated by Planck equation. At room temperature, photoelectrochemical experiments were evaluated in a three-electrode cell. Current and potential data were measured by a digital potentiostat. The light source was 365 nm ultraviolet lamps. Research parameters included photo-to-electron conversion, light intensity, photo-oxidation concentration, cyclic stability, electrolyte and storage charge efficiency.
TiO2 aerogel was characterized as the anatase phase, with crystallite sizes ca. 10-20 nm. V2O5 gel was in the form of agglomerates of 100-200 nm primary particles and shcherbinaite was the only crystalline phase detected. The TiO2 electrode exhibited significant photocurrents upon UV illumination, and the photo-oxidation on the oxide surface led to an increase in photocurrent. From cyclic voltammetry, the V2O5 gel was electrochemically reducible and possessed a capacitive behavior for charge accumulation. After charged under illumination, TiO2/V2O5 composites were observed to exhibit a greater discharge capacity than either TiO2 or V2O5 alone, and the discharge capacity was remarkably reduced in the presence of dissolved oxygen. The study has demonstrated the roles of TiO2 and V2O5 in the composite film during photocharging. A schematic energy diagram for the band structure of the semiconductor composite is proposed.
第一章、緒論 1
1-1概述 1
1-2 研究動機 2
1-3研究目標 3
第二章、文獻回顧 4
2-1 氣凝膠材料 4
2-2 半導體化學 11
2-2.1 能帶構造 11
2-2.2半導體-電解液的界面 14
2-2.3光觸媒化學 16
2-2.4二氧化鈦光催化機制 23
2-3 催化輔助光電能轉換 25
2-4光電化學應用實例 31
2-4.1單成分氧化物 31
2-4.2雙成份複合氧化物 36
第三章、實驗方法 40
3-1 研究大綱 40
3-2 實驗藥品 40
3-3 實驗儀器 41
3-4 材料製備 42
3-5 材料結構鑑定 42
第四章、結果與討論 45
4-1 材料結構分析 45
4-1.1 微粒特徵 45
4-1.2 光學特性 49
4-1.3 元素組成與鍵結分析 50
4-2 二氧化鈦光電能轉換 53
4-2.1 光照射與光氧化劑效應 53
4-2.2光強度效應 57
4-2.3濃度效應 59
4-2.4 光充電循環穩定性 60
4-3光充電儲能特性 61
4-3.1氧化釩循環伏安圖 62
4-3.2氧化釩含量效應 64
4-3.3光電極組合效應 65
4-3.4氧氣效應 68
4-3.5電解質效應 72
4-4 光電能轉換機制 75
第五章、結論 77
參考文獻 79
1.T. Y. Tseng, J. M. Huang, J. G. Lin, J. Mater. Sci. 24 (1989) 2735
2.D.W. Cooper, Part. Sci. Technol. 7 (1989) 371
3.S. S. Kistler, Nature 127 (1931) 741
4.T. M. Tillotson, L. W. Hrubesh, J. of Non-Cryst. Solids 145 (1992) 144
5.H. D. Gesser, P. C. Goswami, Chem. Rev. 89 (1989) 765
6.L. W. Hrubesh, J. Non-Cryst. Solid 225 (1998) 335
7.S. Wang, Fundamentals of Semiconductor Theory and Device Physics, Prentice hall 1989
8.A. L. Linsebigler, G. Lu, J.T. Yates, Chem.Rev. 95 (1995) 735
9.M. R. Hoffmann, S. T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69
10.A. J. Bard, Science 207(1980) 139
11.J. G. Mavroides,J. Electrochem. Soc.124 (1977) 1516
12.A. Hagfeldt and M. Grätzel, Chem.Rev. 95 (1995) 49
13.S. Södergren, A. Haffeldt, J. Olsson, S.-E. Lindquist, J. Phys. Chem. 98 (1994) 5552
14.P.R. Mishra, P.K. Shukla, A.K. Singh, O.N. Srivastava, Int. J. Hydrogen Energy 28 (2003) 1089
15.P. A. Mandelbaum, A. E. Regazzoni, M.A. Blesa, S.A. Bilmers, J. Phys. Chem. B 103 (1999) 5505
16.K. Vinodgopal, S.Hotchandani, P. V. Kamat, J. Phys. Chem. 97 (1993) 9040
17.R. Solarska, I. Rutkowska, R. Morand, J. Augustynski, Electrochim. Acta 51 (2006) 2230
18.C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B105 (2001) 936
19.I. Bedja, S. Hotchandani, R. Carpentier, K.Vinodgopal and P. V. Kamat ,Thin Solid Films 247 (1994) 195
20.E. Potiron, A. Le Gal La Salle, A. Verbaere, Y. Piffard, D. Guyomard, Electrocheim. Acta 45 (1999) 197
21.K. E. Swider-Lyons, C. T. Love, D. R. Rolison, Solid State Ionics 152-153 (2002) 99
22.S. Irina and M. Hepel, J. Electrochem. Soc. 145 (1998) 3981
23.Y. Takahashi, P. Ngaotrakanwiwat, T. Tatsuma, Electrochim. Acta 49 (2004) 2025
24.H. Tada, A. Kokubu, M. Iwasaki, S. Ito, Langmuir 20 (2004) 4665
25.S. Higashimoto, N. Kitahata, K. Mori, M. Azuma, Catal. Lett. 101 (2005)49
26.N. C. Tansil, H.Xie, X. Gao, J. Phys. Chem. B 108 (2004) 16850
27.A. Šurca, S. Benčič, B. Orel, B. Pihlar, Electrocheim. Acta 44 (1999) 3075
28.O.M. Conanec, K.E. Badraoui, P. L’Haridon, J. Solid State Chem. 178 (2005) 218
29.S. Higashimoto, N. Kitahata, K. Mori, M. Azuma, Catal. Lett. 101 (2005) 49
30.D.R. Linde, Handbook of Chemistry and Physics, 73rd ed ., CRC press, 1992
31.N. Serpone, D. Lawless, J. Disdier, J.-M. Herrmann, Langmuir 10 (1994) 643
32.J. Nowotny, T. Bak, M. K. Nowotny, and L. R. Sheppard, J. Phys. Chem. B 100 (2006) 18492
33.I. Saeki, N. Okushi, H. Konno, R. Furuichi, J. Electrochem. Soc. 143 (1996) 2226
34.Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, J. Mater. Sci. 34 (1999) 3721
35.K. L. Hardee, A. J. Bard, J. Electrochem. Soc. 124 (1977) 215
36.G. Centi, E. Giamello, D. Pinelli, F. Trifiro, J. Catal. 130 (1991) 238
37.T. Ivanova, A. Harizanova, M. Surtchev, Mater. Lett. 55 (2002) 327
38.B. Pal, M. Sharon, G. Nogami, Mater. Chem. Phys. 59 (1999) 254
39.J. T. Mayer, U. Diebold, T. E. Madey, E. Garfunkel, J. Electron. Spectrosc. Relat. Phenom. 73 (1995) 1
40.C.-T. Wang, S.-H. Ro, Mater. Chem. Phys. 101 (2007) 41
41.P. M. Kumar, S. Badrinarayanan, M. Sastry, Thin solid Films 358 (2000) 122
42.J. Ph. Nogier, M. Delamar, Catal. Today 20 (1994) 109
43.K. Izawa, T. Yamada, U. Unal, S. Ida, O. Altuntasoglu, M. Koinuma, Y. Matsumoto, J. Phys. Chem. B 110 (2006) 4645
44.I. –H. Kim, B. -W. Cho, Y. –H. Lee, K. -B. Kim, J. Electrochem. Soc. 153 (2006) A989
45.T. Kudo, Y. Ikedaa, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, K. Kajita, Solid State Ionics152~153 (2002) 833
46.E. Cazzanelli, G. Mariotto, S. Passerini, W. H. Smyrl, J. Non-Cryst. Solids 208 (1996) 89
47.J. Livage, Solid State Ionics 86-88 (1996) 935
48.D.R. Rolison, B. Dunn, J. Mater. Chem. 11 (2001) 963
49.S. K. Poznyak, D. V. Talapin, A. I. Kulak, J. Phys. Chem. B 105 (2001) 4816
50.P. Ngaotrakanwiwat, S. Saitoh, Y. Ohko, T. Tatsum and A. Fujishima, J. Electrochem. Soc.150 (2003) A1405
51.H. Tada, A. Kokubu, M. Iwasaki and S. Ito, Langmuir 20 (2004) 4665
52.T. Tatsum, S. Saitoh, Y. Ohko and A. Fujishima, Chem. Mater. 13 (2001) 2838
53.P. Mazellier and B. Sulzberger, Environ. Sci. Technol. 35 (2001) 3314
54.C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, G. J. Meyer, Langmuir 15 (1999) 7047
55.A. Petrella, M. Tamborra, M. L. Curri, P. Cosma, M. Striccoli, P. D. Cozzoli, A. Agostiano, J. Phys. Chem. B 109 (2005) 1554
56.P. E. Tang, J. S. Sakamoto, E. Baudrin, B. Dunn, J. Non-Cryst. Solids 350 (2004) 67
57.G. López-Pérez, R. Andreu, D. González-Arjona, M. Molero, J. J. Calvente, J. Phys. Chem. A 105 (2001) 9156
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top