跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭明鑫
研究生(外文):Ming-Hsin Cheng
論文名稱:場效電晶體之閘極介電層(金屬/氧化鋯/矽)製作與電性分析
論文名稱(外文):The Fabrication and Characterization on Gate Dielectric(Metal/ZrO2/Si(p-type))of Field-Effect Transistors
指導教授:陳世志陳世志引用關係
指導教授(外文):Shih-Chih Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:130
中文關鍵詞:阻擋層漏電流機制射頻磁控濺鍍法氧化鋯
外文關鍵詞:RF sputteringZirconia oxide (ZrO2)Leakage mechanismBarrier layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用射頻磁控濺鍍法於400℃下成長厚度為80Å的ZrO2高介電薄膜於p-Si(100)基板上,在薄膜成長之前先利用N2 plasma濺擊Si基板成長超薄的Si3N4或SiNO阻擋層來防止ZrO2高介電薄膜中的氧原子與Si基板間的相互擴散,以提高整體的介電特性。且將成長ZrO2高介電薄膜完經由事後O2 plasma處理,以填補在成長高介電薄膜過程中所產生的氧空缺,藉由填補的處理方式來降低薄膜的缺陷以得到高介電薄膜的最佳成長條件。
厚度為80Å的ZrO2薄膜事先N2 plasma 3分鐘處理後,將成長完之ZrO2薄膜在不破真空之情況下施以5分鐘的O2 plasma處理,再經過600℃高溫爐管退火3分鐘,其正偏壓1.5V時的漏電流密度可達1.76 × 10-8A/cm2 而在負偏壓1.5V 時的漏電流則為2.72 × 10-8A/cm2,同時介電常數也明顯的提升,高達23.6。這表示Si3N4阻擋層確實有效的阻止薄膜中的氧原子與Si基板間發生相互擴散的情形,而O2 plasma處理可以使薄膜與界面層中的氧空缺(Oxygen Vacancy)能夠更充分的被填補,使得ZrO2高介電薄膜介電特性變佳,更能降低漏電流。在低電場時的漏電流機制為Schottky Emission;在高電場時的漏電流機制為Poole-Frenkel,另外,在高電場時的漏電流機制為F-N Tunneling。
ZrO2 thin films with a thickness of 80Å were deposited on p-Si (100) substrate by RF sputtering at 400℃. Before deposited ZrO2 thin films, Si3N4 and SiNO very thin layers will be grown by using N2 plasma to bombard heated Si substrate or sputtering system with Si3N4 target. The Si3N4 and SINO layers might be as barrier to forbid out-diffusion of oxygen and silicon atoms to promote the MIS performance. ZrO2 films were exposed under oxygen plasma with different duration . The improvement was suggested to be due to the elimination of oxygen vacancies by oxygen plasma surface treatment. Under elimination of oxygen vacancies process, the ultra thin oxide shows high quality and small interfacial trap density.
To compare among these samples, the dielectric for a film after N2 plasma treatment 3 minutes , ZrO2 films were in-situ under oxygen plasma 5 minutes and 5 minutes furnace annealed at 600℃ increased to 23.6 and its leakage current density lowered to 1.76 × 10-8A/cm2 and 2.72 × 10-8A/cm2 at positive and negative applied voltages of 1.5 V, respectively. The Si3N4 layers might be as barrier to forbid out-diffusion of oxygen and silicon atoms, the improvement was suggested to be due to the elimination of oxygen vacancies by oxygen plasma surface treatment to promote the MIS performance and decrease leakage current density. The dominant leakage mechanisms are the Schottky Emission at low electric field , the Poole-Frenkel at high electric field and the Fowler-Nordheim Tunneling at high electric field.
中文摘要 ---- i
英文摘要 ---- ii
致謝 ----iii
目錄 ---- iv
表目錄 ----vii
圖目錄 ----viii

第一章 序論 ---- 1
1-1 前言 ---- 1
1-2 實驗目的 ---- 3
1-3 研究方法 ---- 6
1-4 論文架構 ---- 8

第二章 基本理論及文獻回顧 ---- 12
2-1 高介電材料的選擇之要求 ---- 12
2-2 基本理論 ---- 15
2-2-1 MOS電容 ---- 15
2-2-1-1 理想電容-電壓(C-V)曲線 ----15
2-2-1-2 金屬-氧化層-半導體界面 ---- 17
2-2-2 頻率效應 ---- 20
2-2-3 介電損失 ---- 20
2-2-4 磁控濺鍍 ---- 21
2-2-5 退火 ---- 21
2-2-6 界面電荷效應 ---- 22
2-2-7 表面缺陷密度 ---- 22
2-3 文獻回顧 ---- 23

第三章 實驗步驟 ---- 33
3-1 實驗步驟簡介 ---- 33
3-1-1 成長薄膜前的化學清洗 ---- 33
3-1-2 成長薄膜前Si基板之處理---- 34
3-1-3 於Si基板與高介電薄膜間成長一層阻擋層 - --- 34
3-1-4 ZrO2高介電薄膜備製 ---- 34
3-1-5 熱退火處理 ---- 34
3-1-6 金屬電極的成長 ---- 35
3-2 電性量測 ---- 36
3-2-1 I-V量測 ---- 36
3-2-2 C-V量測 ---- 36
3-3 物性量測 ---- 38
3-3-1 AFM ---- 38
3-3-2 XRD ---- 38
3-3-3 AES ---- 39
3-3-4 SEM ---- 39

第四章 結果與討論 ---- 45
4-1 不同成長溫度的影響 ---- 45
4-1-1 I-V 特性 ---- 45
4-1-2 C-V 特性 ---- 45
4-1-3 XRD 分析 ---- 46
4-1-4 SEM分析 ---- 46
4-2 成長高介電薄膜之前先事先以不同時間的
N2plasma成長Si3N4阻擋層之影響48
4-2-1 I-V 特性 ---- 48
4-2-2 C-V 特性 ---- 48
-2-3 XRD 分析 ---- 49
4-2-4 AFM 分析 ---- 49
4-2-5 SEM分析 ---- 49
4-3 成長高介電薄膜之前先事先以N2 plasma 3分
鐘成長Si3N4阻擋層於不同熱退火溫度於5分鐘
下之影響 ---- 50
4-3-1 I-V 特性 ---- 50
4-3-2 C-V 特性 ---- 51
4-3-3 XRD分析 ---- 52
4-3-4 AFM 分析 ---- 52
4-3-5 SEM 分析 ---- 52
4-4 成長高介電薄膜之後再以不同時間作事後O2
plasma處理之影響 ---- 53
4-4-1 I-V 特性 ---- 53
4-4-2 C-V 特性 ---- 54
4-4-3 XRD 分析 ---- 54
4-4-4 AFM 分析 ---- 55
4-4-5 SEM分析 ---- 55
4-5 成長高介電薄膜之後再以不同退火時間作事後
O2 plasma處理之影響 ---- 56
4-5-1 I-V 特性 ---- 56
4-5-2 C-V 特性 ---- 57
4-5-3 XRD分析 ---- 57
4-5-4 AFM 分析 ---- 58
4-5-5 SEM 分析 ---- 58

第五章 高介電體薄膜之電氣傳導機制分析
---- 86
5-1 高介電體薄膜之電氣傳導 ---- 86
5-2 實驗結果分析 ---- 91

第六章 結論與未來研究方向 ---- 108
6-1 結論 ---- 108
6-2 未來研究方向 ---- 109

參考文獻 ---- 111
1.Katsunore Onishi,Chang Seok Kang,Rino Choi,Hag- Ju Cho,Sundar Goplan,Renee E.Nieh,Siddharth
A.Krishnan,and Jack C.Lee,”Omprovement of
surface carrier mobility of HfO2 MOSFETs by
high-temperature forming gas annealing” IEEE
transaction on electron device, vol.
50,no.2,pp384-390,2003
2.Hong Yu Yu, Stident Member, IEEE, Ming-Fu Li,
Senior Member, IEEE, and Dim-Lee Kwong, Senior
Member, “Thermally Robust HfN Metal as a
Promising Gate Electrode for Advanced MOS
Device Applications” IEEE Transactions on
Electron Devices, vol. 51,no. 4, April 2004
3.Wenjuan Zhu, Jin-Ping Han, Member, IEEE, and
T. P. Ma, Fellow, IEEE, “Mobility Measurement
and Degradation Mechanisms of MOSFETs Made
With Ultrathin High-k Dielectrics” IEEE
Transactions on Electron Devices, vol. 51,no.
1, JANUARY 2004
4.Chang Seok Kang, Student Member, IEEE, Hag-Ju
Cho, Rino Choi, Young-Hee Kim,Chang Yong Kang,
Se Jong Rhee, Changhwan Choi, Strdent Member,
IEEE, Mohammad Shahariar, and Jack C. Lee,
Fellow, “The Electrical and Material
Characterization of Hafnium Oxynitride Gate
Dielectrics With TaN-Gate Electrode” IEEE
Transactions on Electron Decices, vol. 51, no.
2,February 2004
5.International Technology roadmap for
semiconductor 2003
6.D.A. Muller, T. Sorsch, S. Moccio, F. H.
Baumann, K. Evans-Lutterodt, and G. Timp, The
electronic structure at the atomic scale of
ultrathin gate oxides, Nature 399, 758(1999)
7.S. Tang, R. M. Wallace, A. Seabaugh, D. King-
Smith, Ecaluating the minimum thickness of
gate oxide on silicon using first-prnciples
method, Appl. Sur. Sci. 135,137(1998)
8.R. M. Wallace and G. D. Wilk, Exploring the
limits of gate dielectric scaling, Semicond.
Int. June, 153 (2001)
9.T. Aoyama and S. Saida, ”Leakage Current
Mechanism of Amorphous and Polycrystalline
Ta2O5 Films Grown by Chemical Vapor
Deposition”, J. Electrochem. Soc., Volume
143, No.3 March 1996, p.977-p.983
10.W. S. Lau, M. T. Chandirna ,A. K. OW, T. Han,
C.H. Tung, T. T. Sheng and P. K. Chu,
“The Superiority of N2O Plasma Annealing over
O2 Plasma Annealing for Amorphous Tantalum
Pentoxide (Ta2O5) Films”, Jpn. J. Appl.
Phys. Vol.37 (1998), pp. L435-L437.
11.G. E. Moore, IEDM Tech. Dig. , 12, 11 (1975).
12.G. Iwai, IEEE J. Solid-State Circuits, 34,
357 (1999).
13.林明田,葉清發, “DRAM記憶元之沿革與高介電薄膜
之應用”,電子月刊第一卷第四期, p.122-p.127.
14.李雅明,吳世全,陳宏名, “鐵電記憶元件”,電子月
刊第二卷第九期, p.68-p.84
15.吳世全,“高介電材料在記憶元件應用的最新發展”,
電子月刊第四卷第七期,p.134-p.145
16.Y. Ohji and Y. Matsui , “Ta2O5 capacitors''
dielectric material for giga-bit DRAMs”,
IEEE, IEDM 95 p.111-p.114
17.Cheol Seong Hwang, Soon Oh Park, Hag-Ju Cho,
Chang Suk Kang, Ho-Kyu Kang, Sang In Lee, and
Moon Yong Lee , “Deposition of extremely
thin (Ba,Sr)TiO3 thin films for ultra-large-
scale integrated dynamic random access memory
application”, Appl. Phys. Lett. 67 (19), 6
November 1995, p.2819-p.2821.
18.Chich Shang Chang, Tai Bor Wu, Wong Cheng
Shih and Lan Lin Chao, “Dielectric and
Electrical Characteristics of Titanium-
Modified Ta2O5 Thin Films Deposited on
Nitrided Polysilicon by Metal-organic
Chemical Vapor Deposition” Jpn. J. Appl.
Phys. Vol.38(1999) , p.6812-p.6816
19.A. Cappellani 1, J.L. Keddie, N.P. Barradas
and S.M. Jackson, “Processing and
characterisation of sol-gel deposited Ta2O5
and TiO2 -Ta2O5 dielectric thin films”,
Solid-State Electronics 43 (1999), p.1095-
p.1099
20.P. S. Dobal and R. S. Katiyar , “Micro-Raman
scattering and x-ray diffraction studies of
(Ta2O5 )x-(TiO2)1-xceramics”, J. Appl.
Phys. ,Vol 87, Number 12, 2000, p.8688-p.8694
21.R. J. Cava, W. F. Peck, J. J. Krajewski, G.
L. Roberts, B. P. Barber, H. M. O’Bryan, and
P. L. Gammel, “Improvement of the dielectric
properties of Ta2O5 through substitution with
Al2O3”, Appl. Phys. Lett. 70 (11), 17 March
1997, p.1396-p.1398
22.P. C. Joshi, S. Stowell, and S. B. Desu ,
“Structural and electrical properties of
crystalline1-x(Ta2O5)-x(Al2O3) thin films
fabricated by metal-organic solution
deposition technique”, Appl. Phys. Lett. 71
(10), 8 September 1997, p.1341-p.1343
23.Tae Song Kim, Myung Hwan Oh, Chong Hee Kim,
“The thickness dependence of (Ba0.5Sr0.5)
TiO3 thin films deposited on indium tin
oxide-coated glass substrate using r.f.
magnetron sputtering”, Thin Solid Films 254
(1995), p.273-p.277
24.Kenji Natori, Daijiro Otani, and Nobuyuki
Sano, “Thickness dependence of the effective
dielectric constant in a thin film
capacitor”, Appl. Phys. Lett., Vol 73,
1998, p.632-p.634
25.Heiji Watanable, ”Interface engineering of a
ZrO2/SiO2/Si layered structure by in situ
reoxidation and its oxygen-pressure-dependent
thermal stability”, Applied Physics
Letters , Vol. 78, No.24,p. 3803,2001
26.J. P. Chang and Y.-S. Lin, “Dielectric
Property and conduction mechanism of
ultrathin zirconium oxide films”, Applied
Physics Letters , Vol. 79, No. 22, 2001
27.J. P. Chang and Y.-S. Lin, “Thermodynamic
stability of high-K dielectric metal oxides
ZrO2 and HfO2 in contact with So and SiO2”,
Applied Physics Letters , Vol. 80, No. 23,
p.1897, 2002
28.S. M. Sze, Physics of Semiconductor Devices,
2nd ed. (Wiley, New York,1981).
29.E. H. Nicollian and J. R. Brews, MOS (Metal
Oxide Semiconductor)Physics and Technology
(Wiley, New York, 1982).
30.J. Robertson, Electronic structure amd band
offsets of high-dielectri-constant gate
oxides, MRS Bulletin Mar, 217 (2002)
31.P. W. Peacock and J. Robertson, Band offsets
and Schottky barrier heights of high
dielectric constant oxides, J. Appl. Phys.
92, 4712 (2002)
32.J. Robertson and C. W. Chen, Schottky barrier
heights of tantalum oxide,barium strontium
titanate, lead titanate, and strontium
bismuth tantalite,Appl. Phys. Lett. 74, 1168
(1999)
33.D. G. Schlom and J. H. Haeni, A thermodynamic
approach to selectingalternative gate
dielectrics, MRS Bulletin Mar, 198 (2002)
34.龔道本, 1996, “MIS電容器的平帶電容的計算”,
半導體光電, 第17卷, 第一期, pp. 32-38.
35.S. M. SZE, 1985, Physics of Semiconductor
Device, Chapter 7, 2nd Edition, Central Book
Company, Taipei, Taiwan.
36.施敏, 2002, 半導體元件物理與製作技術, 國立交
通大學出版社, 第二版, pp. 278-280.
37.W.Bolton, ”Engineering Materials
Technology” , 3rd Edition,1998
38.詹世雄,鄧德宏,鄭晃忠, “鐵電薄膜之沉積與應
用”,電子月刊第二卷第七期,p.70-p.72
39.莊達人,”VLSI製造技術”,高立圖書,1995
40.A. Pignolet, G. Mohan Rao and S.B.
Krupanidhi, ”Rapid thermal processed thin
films of reactively sputtered Ta2O5 ”, Thin
Solid Films 258 (1995) p.230-p.235.
41.Stephen A. Campbell, David C. Gilmer, Xiao-
chuan Wang, Ming-ta Hsieh, Hyeon-Seag Kim,
Wayne L. Gladfelter, and Jinhua Yan,
MOSFET Transistors Fabricated with High
Permitivity TiO2 Dielectric”, IEEE
Transcations on Electron Devices, VOL. 44,
NO. 1, 1997, p.104-p.109
42.W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y.
Jeon and J. C. Lee, Electrical and
reliability characteristics of ZrO2
deposited directly on Si for gate dielectric
application, Appl. Phys. Lett. 77, 3269
(2000)
43.W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y.
Jeon, K. Onishi, T. Ngai, S.Banerjee and J.
C. Lee, MOSCAP and MOSFET characteristics
usingZrO2 gate dielectric deposited directly
on Si, Tech. Dig. IEDM 99-145
44.M. Houssa, V. V. Afanas’ev, A. Stesmans and
M. M. Heyns, Variation in the fixed charge
density of SiOx/ZrO2 gate dielectric stacks
during postdeposition oxidation, Appl. Phys.
Lett. 77, 1885 (2000)
45.J. M. Howard, V. Craciun, C. Essary and R.
K. Singh, Interfacial layer formation during
high-temperature annealing of ZrO2 thin
films on Si, Appl. Phys. Lett. 81, 3431
(2002)
46.T. Yamaguchi, H. Satake, N. Fukushima and A.
Toriumi, Study on Zr-silicate interfacial of
ZrO2 metal-insulator-semiconductor
structure, Appl. Phys. Lett. 80, 1987 (2002)
47.J. P. Chang and Y.-S. Lin, Dielectric
property and conduction mechanism of
ultrathin zirconium oxide films, Appl. Phys.
Lett. 79, 3666 (2001)
48.S. Jeon and H. Hwang, Electrical
characteristics of ultrathin ZrO2 prepared
by wet oxidation of an ultrathin Zr-metal
layer, J. Vac. Sci. Technol. B 20, 400 (2002)
49.S. Ramanathan, D. A. Muller, G. D. Wilk, C.
M. Park and P. C. Mclntyre, Effect of oxygen
stoichiometry on the electrical properties
of zirconia gate dielectrics, Appl. Phys.
Lett. 79, 3311 (2001)
50.K. Yamamoto, S. Hayashi, M. Kubota and M.
Niwa, Effect of Hf metal predeposition on
the properties of sputtered HfO2/Hf stacked
gate dielectrics, Appl. Phys. Lett. 81, 2053
(2002)
51.B. Y. Tsui and H. W. Chang, Formation of
interfacial layer during reactive sputtering
of hafnium oxide, J. Appl. Phys. 93, 10119
(2003)
52.R. Nieh,,, R. Choi, S. Gopalan, K. Onishi,
C. S. Kang, H.-J. Cho, S. Krishnan and J. C.
Lee, Evaluation of silicon surface
nitridation effects on ultra-thin ZrO2 gate
dielectrics, Appl. Phys. Lett. 81, 1663
(2002)
53.H. Ishii , A. Nakajima and S. Yokoyama,
Growth and electrical properties of atomic-
layer deposited ZrO2/Si-nitride stack gate
dielectrics, J. Appl. Phys. 95, 536 (2004)
54.P. D. Kirsch, C. S. Kang, J. Lozano, J. C.
Lee and J. G. Ekerdt, Electrical and
spectroscopic comparision of HfO2/Si
interfaces on nitrided and un-nitrided Si
(100), J. Appl. Phys. 91, 4353 (2002)
55.Y.-S. Lin, R. Puthenkovilakam, and J. P.
Chang, “Interfacial properties of ZrO2 on

silicon”,J. Appl. Phys. VOL.93, NO. 10, 15
May 2003,p.5945-5952
56.M. Copel, M. A. Gribelyuk and E. P. Gusev,
Structure and stability of ultrathin
zirconium oxide layers on Si (001), Appl.
Phys. Lett. 76, 436 (2000)
57.Haruhiko Ono,a) Yumiko Hosokawa, Taeko
Ikarashi, Keisuke Shinoda and Nobuyuki
Ikarashi, ”Formation mechanism of
interfacial Si-oxide layers during
postannealing of Ta2O5/Si”,JOURNAL OF
APPLIED PHYSICS, VOLUME 89, NUMBER 2,
2001,p.995-p.1002
58.C. Wiemer, M. Fanciulli, B. Crivelli, G.
Pavia, and M. Alessandri, " Evolution of
Crystallographic Ordering in Hf1-XAlXOY High-
K Dielectric Deposited by Atomic Layer
Deposition”, Appl. Phyl. Lett., Vol. 83,
No.25, pp. 5271-5273, 2003.
59.汪建民, “材料分析”,中國材料科學學會, 1998
60.Yung-Bin Lin and Joseph Ya-min Lee ,”The
temperature dependence of the conduction
current in Ba0.5Sr0.5TiO3 thin-film
capacitors for memory device applications”,
J. Appl. Phys. ,Vol. 87, Number 4 , 2000,
p.1841-p.1843
61.Jae-Hyun Joo,a) Jeong-Min Seon, Yoo-Chan
Jeon, Ki-Young Oh, Jae-Sung Roh and Jae-Jeong
Kim, “Improvement of leakage currents of Pt/
(Ba, Sr)TiO3 /Pt capacitors”, Appl. Phys.
Lett. 70 (22), 2 June 1997, p.3053-p.3055
62.Cheol Seong Hwang, Byoung Taek Lee, Chang
Seok Kang, Ki Hoon Lee, Hag-Ju Cho, Horii
Hideki, Wan Don Kim, Sang In Lee, and Moon
Yong Lee, “Depletion layer thickness and
Schottky type carrier injection at the
interface between Pt electrodes and (Ba, Sr)
TiO3 thin films”, J. Appl. Phys. ,Vol. 85,
Number 1 ,1999, p.287-p.295
63.P. C. Joshi and M. W. Cole, “Influence of
post-deposition annealing on the enhanced
structural and electrical properties of
amorphous and crystalline Ta2O5 thin films
for dynamic random access memory
applications”, Journal of Applied
Physics ,1999 Volume 86, Issue 2, p.871-p.880
64.H. Sawada and K. Kawakami, “Electronic
structure of oxygen vacancy in Ta2O5” J.
Appl. Phys. ,Vol. 86, Number 2 ,1999, p.956-
p.959
65.Fu-Chien Chiu, Jenn-Jyh Wang, Joseph Ya-min
Lee and Shich Chuan Wu, “Leakage currents in
amorphous Ta2O5 thin films”, J. Appl. Phys.
81 (10), 15 May 1997, p.6911-p.6914
66.C. Chaneliere and J. L. Autran ,” Conduction
mechanisms in Ta2O5 / SiO2 and Ta2O5 /Si3N4
stacked structures on Si”, J. Appl.
Phys. ,Vol 86,1999, p.480-p.486
67.S. Ezhilvalavan and Tseung-Yuen Tseng, ”
Conduction mechanisms in amorphous and
crystalline Ta2O5 thin films”, J. Appl.
Phys. ,Vol 83, Number 9 ,1998, p.4797-p.4801
68.C. Chaneliere, S. Four, J. L. Autran, R. A.
B. Devine and N. P. Sandler, “Properties of
amorphous and crystalline Ta2O5 thin films
deposited on Si from a Ta(OC2H5)5
precursor”, J. Appl. Phys. ,Vol 83, Number
9 ,1998, p.4823-p.4828
69. M. S. Tsai, S. C. Sun, and T. Y. Tseng,”
Effect of oxygen to argon ratio on properties
of(Ba,Sr)TiO3 thin films prepared by radio-
frequency magnetron sputtering”, J. Appl.
Phys. 82 (7), 1 October 1997, p.3482-p.3487
70.Donald A Neamen “Semiconductor Physics and
Device, Basic Principle”, Irwin, ,1992
71.S.M.Sze, “Physics of Semiconductor
Devices”, 2nd Edition, 1981C. Y. Hu,1999,”
The Study of (TiO2)x-(Ta2O5)1-x High
Dielectric Thin Films by RF Sputtering”,
National Yunlin University of Science and
Technology,Master Thesis
72.M. J. Tsai,2000,“The Study of Composite
and Multilayered (Ta2O5)-(TiO2) High
Dielectric Thin Films”,National Yunlin
University of Science and Technology,Master
Thesis
73.T.Dimitrova,Karshak,E.Atanassova,”
Crystallization effects in oxygen annealed
Ta2O5 thin films on Si”,Thin Solid Films
381,2001,31-38
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊