跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡炎熹
研究生(外文):Yen-His Tsai
論文名稱:氧化釕感測電極應用於維生素C酵素感測元件之備製與分析
論文名稱(外文):Fabrication and analysis of the ascorbic acid biosensor based on the ruthenium oxide sensing electrode
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung-Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:116
中文關鍵詞:氧化釕生醫感測器維生素C網版印刷酵素固定化
外文關鍵詞:RuOxBiosensorEnzyme ImmobilizationScreen-printedAscorbic Acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
近年來,生物感測系統之發展與應用已蓬勃發展於各個領域,例如醫藥與健康、化工領域、食品工業以及環境監測等。有鑑於此本論文備製一低成本、微型化、固態保存之酵素感測電極,用以偵測溶液之酸鹼值與維生素C含量,陣列式感測電極利用網版印刷技術備製,將碳膠、銀膠印刷於可撓式塑膠基板(PC, PET),本論文設計之酵素感測電極包含一參考電極(銀/氯化銀-擬參考電極與聚吡咯導電高分子參考電極)與一組工作電極。為提升元件之感測度,因此利用射頻濺鍍法沈積氧化釕薄膜,作為工作電極之表面修飾。酵素固定化採用丙基三甲氧基矽烷(GPTS)將維生素C酵素固定於感測區表面。
本論文使用電壓-時間量測系統觀察感測元件之工作特性,主要包含工業用儀表放大器與電壓記錄程式,藉由上述技術本論文已成功備製微型化、可拋棄式之酵素感測元件,且具有優異之感測度與響應時間。
藉由實驗得知本論文備製之感測元件於pH1~pH13之間,可獲得51.85mV/pH之感測度,且備製之微型化導電高分子參考電極具有極微小之時漂電位(5mV/hour),最佳之感測電位標準差值為1.093 mV。本論文所備製之維生素C感測元件偵測範圍係0.02mM至1mM,且於此範圍內之線性度0.86,感測度為13.85mV/pH。
A low cost, small size and all-solid-state enzyme sensing electrode useful for determination of pH value and vitamin C concentration has been presented. The sensor arrays were fabricated by screen-printing technique, using polymer pastes (carbon ink, Ag paste), and flexible substrates (PC, PET). Each enzyme electrode contains a miniaturized reference electrode (Ag/AgCl quasi-reference electrode and conductive polymer (PPy) reference electrode) and a pair of working electrode. The ruthenium oxide (RuOX) thin film was deposited on the working area by means of R.F. sputtering for surface modification. GPTS (3-glycidoxypropy1trimethoxysilane) was used to immobilize that will undergo the enzyme reaction in the mixed solution.
The performance of the sensor was monitored by a voltage-time (V-T) system, which consist of an instrumentation amplifier and voltage recording program. In this work, the developed electrodes were useful as miniaturized, disposable enzyme measurement sensor, and exhibit high sensitivity and fast response.
In accordance with experiment results, the sensor has better average sensitivity of 51.85mV/pH between pH 1 and pH 13. The investigated characteristics in the polypyrrole film modified reference electrode showed a very small drift voltage (5mV/hour) and the standard deviation of the reference electrode was 1.093mV. According to the experiment result, the potential response of the enzyme based biosensor depends linearly on L-ascorbic acid concentration between 0.02mM-1mM whit a linear correlation coefficient of 0.86 and the sensitivity was 13.85mV/mM.
中文摘要
英文摘要
誌謝
目錄

Chapter 1 Introduction
1.1 Introduction of bio-sensing system
1.2 Biosensor
1.3 Potentiometric sensor
1.4 Research objective

Chapter 2 Theory Description
2.1 Introduction
2.2 Site-binding model
2.3 Enzyme mechanism
2.3.1 Enzyme kinetics and activation energy
2.3.2 Ascorbic acid enzyme

Chapter 3 Experiment
3.1 Introduction
3.2 Chemicals
3.3 Flexible substrate
3.3.1 PC (polycarbonate)
3.3.2 PET (Polyethylene terephthalate)
3.4 Fabrication of sensor array
3.4.1 Review of technical literatures
3.4.2 Design and fabrication
3.5 Fabrication of miniaturized reference electrode
3.5.1 Review of technical literatures
3.5.2 Design and fabrication
3.6 Deposition of RuOx thin film
3.6.1 Review of technical literatures
3.6.2 Design and fabrication
3.7 Enzyme immobilization
3.7.1 Immobilization of ascorbate oxidase

Chapter 4 Results and discussion
4.1 Introduction
4.2 Surface structure analysis of RuOx thin films
4.3 Characteristics RuOx pH electrode
4.4 Characteristics of miniaturized reference electrode
4.5 Characteristics of the ascorbic acid biosensor
4.5.1 Response characteristic of the biosensor in different ascorbic acid concentrations
4.5.2 Influence of the ascorbic acid biosensor at Ca+ and k+ ion

Chapter 5 Conclusion

Table list
Figure list
References

Specifications
1.Specification of the ruthenium oxide modified sensor array
2.Specification of the polypyrrole film modified reference electrode
3.Specification of the Ag/AgCl quasi-reference electrode
4.Specification of the ascorbic acid biosensor

中文簡介
口試問題答辯
個人簡歷
[1]Chu-Neng Tsai, 2005, “Study on the non-ideal effect of the tin oxide pH sensor and the calibration method”, Master’s thesis, Institute of Electronic Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, pp. 1-7.
[2]M.S. Frant, 1994, “History of the early commercialization of ion-selective electrodes”, Analyst, Vol. 199, pp.2293-2301.
[3]M.E. Meyerhoff, W.N. Opdycke, 1986, “Ion selective electrodes”, Advances in Clinical Chemistry, Vol. 25, pp.1-47.
[4]K. Covington, 1979, “Ion-selective electrode methodology”, Chemical Rubber Company, Vol. 1, pp.166-172.
[5]Clark Jr LC, Lyons C, 1962, “Electrode systems for continuous monitoring in cardiovascular surgery”, Annals of the New York Academy of Sciences, Vol. 102, pp. 29-45.
[6]Y. U. Zhang, W. D. Shen, R. A. Gu, J. Zhu, R. Y. Xue, 1998, “Amperometric biosensor for uric acid based on uricase immobilized silk fibroin membrane”, Analytical Chimica Acta, Vol. 369, pp. 123-128
[7]Luo. Xi-Liang, Xu. Jing-Juan, Zhao. Wei, Chen. Hong-Yuan, 2004, “Glucose biosensor based on ENFET doped with SiO2 nanoparticles”, Sensors and Actuators B, Vol. 97, pp. 249-255.
[8]C. Retna Raj, T. Ohsaka, 2003, “Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol”, Journal of Electroanalytical Chemistry, Vol. 540, pp. 69-77.
[9]C. H. Peter, W. L. David, W. A. Graham, 1995, “A potassium ion selective electrode with valinomycin based Poly (vinyl chloride) membrane and poly (vinyl ferrocene) solid contact”, Analytica Chimica Acta, Vol. 302, pp. 241-248.
[10]D.G. Pijanowska, E. Luboch, J. F. Biemat, M. Dawgul, W. Torbicz, 1999, “Na+-selective chemFETs based on a novel ionophore : bis(phenylbenzo)-13-azocrown-5”, Sensors and Actuators B, Vol. 58, pp. 384-388.
[11]Nien-Hsuan Chou, 2004, “study and fabrication on solid state enzyme biosensors based on ammonium ion-selective electrodes”, Master’s Thesis, Institute of Electronic Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, pp. 2-4.
[12]D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, 2001, “Electrochemical biosensors: recommended definitions and classifications”, Biosensors and Bioelectronics, Vol. 16, pp. 121- 131.
[13]L.J. Blum and P.R. Coulet, 1991, “Biosensor principles and applications”, Marcel Dekker, New York, pp. 1-4.
[14]http://www.ewh.ieee.org/tc/sensors/SJ/Special_issues.htm.
[15]J.D.R. Thomas, 2001, “Devices for ion-sensing and pX measurements”, Pure and Applied Chemistry, Vol. 73, pp. 31–38.
[16]Sheng-Hung Chen, 2006, “Study on ruthenium oxide and enzymatically modified electrode with penicillin for amperometric and potentialmetric measurements”, Master’s thesis, Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan, p. 29.
[17]Lan-Pin Liao, 2001, “Study on the integrated readout circuit design for the pH-ISFET based on titanium dioxide”, Master’s thesis, Institute of Electronic and Information Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan, pp. 11-12.
[18]P. Bergveld, 1970, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Bio-medical Engineering, Vol. MBE-17, pp. 70-71.
[19]J. Van der Spiegel, I. Lauks, P. Chan D. Babic, 1983, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators B, Vol. 4, pp. 291-298.
[20]Clifford D. Fung, Peter W. Cheung, Wen H. Ko, 1986, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transactions on Electron Devices, Vol. ED-33, pp. 8-18.
[21]R. E. G. Van Hall, J. C.T. Eijkel, P. Bergveld, 1995, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters”, Sensors and Actuators B, Vol. 24-25, pp. 201-205.
[22]William V. Dashek, Jessie A. Micales, 1997 “Assay and purification of enzymes-oxalate decarboxylase”, ed. Methods in plant biochemistry and molecular biology, Chemical Rubber Company, Chapter 5, pp. 49-50.
[23]Kalina Draganova, Sebastian Springer, “Fundamental chemistry for the life sciences”, 2006, International University Bremen, Version 3, pp. 41-43.
[24]Thierry Lonhienne, Charles Gerday, Georges Feller, 2000, “Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local fexibility”, Biochimica et Biophysica Acta, Vol. 1543, pp. 1-10.
[25]Amos Bairoch, 2000, “The enzyme database in 2000”, Nucleic Acids Research, Vol. 28, pp. 304-305.
[26]Lilley DM, 2005, “Structure, folding and mechanisms of ribozymes”, Current Opinion in Structural Biology, Vol. 15, pp. 313-323.
[27]http://en.wikipedia.org/wiki/
[28]Steven C. Rumsey, Mark Levine, 1998, “Absorption, transport, and disposition of ascorbic acid in humans”, Nutritional Biochemistry, Vol. 9, pp. 116-130.
[29]Julio Cesar. Fernandes, Lauro Tatsuo Kubota, Graciliano de Oliveira Neto, 1999, “Potentiometric biosensor for L-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene±vinylacetate membrane”, Analytica Chimica Acta, Vol. 385, pp. 3-12.
[30]E. Akyilmaz, E. Dinckaya, 1999, “A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid”, Talanta, Vol. 50, pp. 87-93.
[31]Renato C. Matos, Márcio A. Augelli, Claudimir L. Lago, Lúcio Angnes, 2000, “Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium”, Analytica Chimica Acta, Vol. 404, pp.151–157.
[32]Xia Wu, Yuxia Diao, Changxia Sun, Jinghe Yang, Yuebo Wang, Shuna Sun, 2003, “Fluorimetric determination of ascorbic acid with o-phenylenediamine”, Talanta, Vol. 53, pp. 95-99.
[33]Robert Koncki, Tomasz Lenarczuk, Anna adomska, Stanislaw Glab, 2001, “Optical biosensors based on prussian blue films”. Analyst, Vol. 126, pp. 1080-1085.
[34]Leena Suntomsuk, Wandee Gritsanapun, Suchada Nilkamhank, Anocha Paochom, 2002, “Quantitation of vitamin C content in herbal juice using direct titration”. Journal of Pharmaceutical and Biomedical Analysis, Vol. 28, pp. 849-855.
[35]Jyh-Myng Zen, Dong-Mung Tsai, Annamalai Senthil Kumar, Venkataraman Dharuman, 2000, “Amperometric determination of ascorbic acid at a ferricyanide-doped tosflex-modified electrode”. Electrochemistry Communications, Vol. 2, pp. 782-785.
[36]Xi-Liang Luo, Jing-Juan Xu, Wei Zhao, Hong-Yuan Chen, 2004, “Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles”, Analytica Chimica Acta, Vol. 512, pp. 57-61.
[37]Chung-We Pan, 2005, “Study on the solid-state urea biosensor based on the differential method”, Ph. D. thesis, Institute of Electronic Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, pp. 31-35.
[38]C. H. Hung, 2007, “Introduction and application of flexible substrate”, Industrial Materials, Vol. 243, pp. 159-168.
[39]Z. X. Hou, J. Wu, Z. R. Wang, 2004, “A study of the bulge-forming of polycarbonate (PC) sheet”, Journal of Materials Processing Technology, Vol. 151, pp. 312-315 .
[40]F. Mahdi, A. A. Khan, H. Abbas, 2007, “Physiochemical properties of polymer mortar composites using resins derived from post-consumer PET bottles”, Cement and Concrete Composites, Vol. 29, pp. 241-248.
[41]http://www.goodfellow.com/scripts/web.wl
[42]http://www.permtop.com.tw/p5.html
[43]Robert Koncki, Dominika Ogonczyk, Stanisław Głab, 2005, “Potentiometric assay for acid and alkaline phosphatase”, Analytica Chimica Acta, Vol. 538, pp. 257-261.
[44]Ł. Tymecki, E. Zwierkowsk, S. Głab, R. Koncki, 2003, “Strip thick-film silver ion-selective electrodes”, Sensors and Actuators B, Vol. 96, pp. 482-488.
[45]D. Ogonczyk, Ł. Tymecki, I. Wyzkiewiczb, R. Koncki, S. Głab, 2005,“Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions”, Sensors and Actuators B, Vol. 106, pp. 450-454.
[46]Łukasz Tymecki, El˙zbieta Zwierkowska, Robert Koncki, 2005, “Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing”, Analytica Chimica Acta, Vol. 538, pp. 251-256.
[47]Ł. Tymecki, R. Koncki, 2006, “Thick-film potentiometric biosensor for bloodless monitoring of hemodialysis”, Sensors and Actuators B, Vol. 113. pp. 782-786.
[48]http://www.auto-printing-machines/ Houn-jine.com.tw/
[49]Anette Simonis, Marek Dawgul, Hans Luth, Michael J. Schoning, 2005, “Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology”, Electrochimica Acta, Vol. 51. pp. 930-937.
[50]Łukasz Tymecki, El˙zbieta Zwierkowska, Robert Koncki, 2004, “Screen-printed reference electrodes for potentiometric measurements”, Analytica Chimica Acta, Vol. 526, pp. 3-11.
[51]Anette Simonis, Hans Lüth, Joseph Wang, Michael J. Schöning, 2004, “New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems”, Sensors and Actuators B, Vol. 103, 429-435.
[52]H.R. Kim, Y.D. Kim, K.I. Kim, J.H. Shim, H. Nam, B.K. Kang, 2004, “Enhancement of physical and chemical properties of thin film Ag/AgCl reference electrode using a Ni buffer layer”, Sensors and Actuators B, Vol. 97, pp. 348-354.
[53]Gregory S. Reeder, William R. Heineman, 1998, “Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead”, Sensors and Actuators B, Vol. 52, pp. 58-64.
[54]Natalia V. Blinova, Jaroslav Stejskal, Miroslava Trchová, Jan Prokeš, Mária Omastová, 2007, “Polyaniline and polypyrrole: a comparative study of the preparation”, European Polymer Journal, Vol. 43, pp. 2331-2341.
[55]Jung-Chuan Chou, Chien-Cheng Chen, 2006, “Study on the high conductive polymer as the miniaturized reference electrode”, Rare Metal Materials and Engineering, Vol. 35, pp. 254-255.
[56]Jung-Chuan Chou, Shih-I Liu, Sheng-Hong Chen, 2005, “pH and procaine sensing characteristics of extended-gate field-effect transistor based on indium tin oxide glass”, Japanese Journal of Applied Physics, Vol. 44, pp. 4838-4842.
[57]Kenneth G. Kreider, Michael J. Tarlov, James P. Cline, 1995, “Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides”, Sensors and Actuators B, Vol. 28, pp. 167-172.
[58]Robert Koncki, Marco Mascini, 1997, “Screen-printed ruthenium dioxide electrodes for pH measurements”, Analytica Chimica Acta, Vol. 351, pp. 143-149.
[59]J.A. Mihell, J. K. Atkinson, 1998, “Planar thick-film pH electrodes based on ruthenium dioxide hydrate”, Sensors and Actuators B, Vol. 48, pp. 505-511.
[60]Chung-We Pan, Jung-Chuan Chou, Tai-Ping Sun, Shen-Kan Hsiung, 2005, “Development of the tin oxide pH electrode by the sputtering method”, Sensors and Actuators B, Vol. 108, pp. 863-869.
[61]Jung-Chuan Chou, Lan-Pin Liao, 2005, “Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method”, Thin Solid Films, Vol. 476, pp. 157-161.
[62]Jung-Chuan Chou, Jung-Lung Chiang, Chin-Lung Wu, 2005, “pH and procaine sensing characteristics of extended-gate field-effect transistor based on indium tin oxide glass”, Japanese Journal of Applied Physics, Vol. 44, pp. 4838-4842.
[63]Jeong-gun Lee, Suk-ki Min, Sung-Ho Choh, 1994, “Deposition and properties of reactively sputtered ruthenium dioxide thin films as an electrode for ferroelectric capacitors”, Japanese Journal of Applied Physics, Vol. 33, pp. 7080-7085.
[64]Jacques A. Augis, Lon L. Hines, 1978, “Sputtered ruthenium as a contact material for sealed reeds”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 1. pp. 46-53.
[65]Jung-Chuan Chou, Shih-I Liu, Sheng-Hong Chen, 2005, “Sensing characteristics of ruthenium films fabricated by radio frequency sputtering”, Japanese Journal of Applied Physics, Vol. 44, pp. 1403-1408.
[66]A. Fog, R.F. Buck, “Electronic semiconducting oxides as pH”, 1984, Sensors and Actuators B, Vol. 5, pp. 137-146.
[67]J.A. Mihell, J.K. Atkinson, 1995, “Planar thick-film pH electrodes based on ruthenium dioxide hydrate”, Sensors and Actuators B, Vol. 48, pp. 505-511.
[68]M.J. Tarlov, S. Semancik, K.G. Kreider, 1990, “Mechanistic and response studies of iridium oxide pH sensors”, Sensors and Actuators B, Vol. 1, pp. 293-297.
[69]K. Pasztor, A. Sekiguchi, N. Shimo, N. Kitamura, H. Masuhara, 1993, “Iridium oxide based microelectrochemical for pH sensing”, Sensors and Actuators B, Vol. 12, pp. 225-230.
[70]H. N. McMurray, P. Douglas, D. Abbott, 1995, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites”, Sensors and Actuators B, Vol. 28, pp. 9-15.
[71]Chung-We Pan, Jung-Chuan Chou, Tai-Ping Sun, Shen-Kan Hsiung, 2005, “Development of the real time pH sensing system for array sensors”, Sensors and Actuators B, Vol. 108, pp. 870-876.
[72]Chung-We Pan, Jung-Chuan Chou, Tai-Ping Sun, Shen-Kan Hsiung, 2005, “Development of the tin oxide pH electrode by the sputtering method”, Sensors and Actuators B, Vol. 108, pp. 863-869.
[73]Trasatti, 1991, “Review article-physical electrochemistry of ceramic oxides”, Electrochim Acta, Vol. 36, pp. 225-241.
[74]Łukasz Tymecki, El˙zbieta Zwierkowska, Robert Koncki, 2004, “Screen-printed reference electrodes for potentiometric measurements”, Analytica Chimica Acta, Vol. 526, pp. 3-11.
[75]D. Desmond, B. Lane, J. Alderman, J. D. Glennon, D. Diamond, D. W. M. Arrigan, 1997, “Evaluation of miniaturized solid state reference electrodes on a silicon based component”, Sensors and Actuators B, Vol. 44, pp. 389-396.
[76]Anette Simonis, Marek Dawgul, Hans Luth, Michael J. Schoning, 2005, “Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology”, Electrochimica Acta, Vol. 51, pp. 930-937.
[77]Gregory S. Reeder, William R. Heineman, 1998, “Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead”, Sensors and Actuators B, Vol. 52, pp. 58-64.
[78]Viatcheslav Volotovsky, Namsoo Kim, 1998, “Determination of glucose, ascorbic and citric acids by two-ISFET multienzyme sensor”, Sensors and Actuators B, Vol. 49, pp. 253-257.
[79]Viatcheslav Volotovsky, Namsoo Kim, 1998, “Ascorbic acid determination with an ion-sensitive field effect transistor-based peroxidase biosensor”, Analytica Chimica Acta, Vol. 359, pp. 143-148.
[80]Panayotis G. Veltsistas, Mamas I. Prodromidis, Constantinos E. Efstathiou, 2004, “All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact”, Analytica Chimica Acta, Vol. 502, pp. 15-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉世雄(2000)。國小教師運用資訊科技融入教學策略之探討。資訊與教育雜誌,78,60-66。
2. 張國恩(2002)。從學習科技的發展看資訊融入教學的內涵。北縣教育,41,16-25。
3. 張國恩(1999)。資訊融入各科教學之內涵與實施。資訊與教育雜誌,72,2-9。
4. 邱瓊慧(2002)。中小學資訊科技融入教學之實踐。資訊與教育,88,3-9。
5. 廖遠光(1999)。國小教師對教學科技使用效果的態度之研究。教學科技與媒體,45,32-39。
6. 林正彬(2003)。有效提昇國小教師參與資訊融入教學之策略。研習資訊,20(1),65-75。
7. 吳沂木(1999)。淺談資訊教育融入學科教學。班級經營,4(1)。47-52。
8. 吳明隆(1998)。新時代師生電腦素養的探究。教育部電子計算機中心簡訊,8810,33-49。
9. 吳明隆(1998)。國小網路應用教學的瓶頸與發展方向。資訊與教育,66,40-46。
10. 李鴻亮(2000)。數位媒體與教材教法的結合(下)。教學科技與媒體,51,27-29。
11. 李鴻亮(2000)。數位媒體與教材教法的結合(上)。教學科技與媒體,50,37-41。
12. 何榮桂(2002)。台灣資訊教育的現況與發展-兼論資訊科技融入教學。資訊與教育,87,22-47。
13. 何榮桂(2001)。從九年一貫新課程規劃看我國資訊教育未來的發展。資訊與教育雜誌,85,5-14。
14. 何榮桂、顏永進(2001)。資訊融入健康與體育領域教學。教師天地,112,71-75。
15. 何榮桂、陳麗如(2001)。中小學資訊教育總藍圖的內涵與精神。資訊與教育雜誌,85,22-28。