跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐麗瀅
研究生(外文):Li-ying Shu
論文名稱:自製沸石玻纖濾網之特性分析及其甲醛吸附效能之研究
論文名稱(外文):The characteristic analysis and adsorbing efficiency of formaldehyde by self-made zeolite glass filter
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):Chu-chin Hsieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:109
中文關鍵詞:水熱法吸附動力式室內空氣品質矽鋁比
外文關鍵詞:indoor air qualitysilicon - aluminum ratiohydrothermal synthesisadsorption kinetic model
相關次數:
  • 被引用被引用:14
  • 點閱點閱:656
  • 評分評分:
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:1
現代人每天在室內活動和居處的時間高達90 %以上,且一般室內空氣污染物濃度比戶外高2-5倍,因此室內空氣品質(indoor air quality, IAQ)的良窳將直接或間接影響人體健康。目前針對室內環境之揮發性有機物(volatile organic compounds, VOCs)多以吸附方式進行去除,而常見吸附劑如活性碳,雖能去除臭味以及VOCS,但因可吸附的物質種類有限及易受水氣影響致其吸附能力無法有效提升。有鑑於此,本研究乃自製沸石玻纖濾網,並針對甲醛(formaldehyde)等室內環境中常見之污染物,進行吸附實驗並評估其應用於室內之可行性,冀望得以發展出具實用性及經濟性之複合吸附材料,使IAQ得符合未來環保署之規範,並保障人體之健康。
然在自製沸石玻纖濾網前首先先確認其最佳自製沸石之掺配比例,本研究乃以四種掺配比例自製沸石並針對甲醛進行吸/脫附實驗,其亦與市售沸石做比較,結果得市售沸石對甲醛之第一次吸附能力為54 mg/g,第二次吸附能力為5 mg/g,顯示其再生能力不彰。而本研究自製沸石(35 % Y zeolite+65 % SiO2)第一次吸附能力為84 mg/g;第二次吸附能力為78 mg/g,由EDS分析得自製沸石SAR(silicon - aluminum ratio,SAR)為6;由XRD分析得SAR6經吸/脫附後之沸石晶相未因高溫水氣脫附甲醛而遭受到改變因此再生能力佳,然而本研究亦得以確認SAR6乃是較適合之沸石製作比例。
將SAR6沸石於不同甲醛濃度下進行吸附實驗以求得其等溫吸附方程式,結果為Langmuir吸附方程式較適合描述自製沸石吸附甲醛之行為;爾後進一步利用其等溫吸附方程式推導一預測自製沸石之貫穿曲線公式,並與實際吸附作比較,其結果得由推估公式推導沸石吸附甲醛的破出時間介於實際吸附之破出與貫穿時間,以質量平衡計算貫穿曲線之面積(即吸附量),兩者差距甚小,未來得以此推估公式提供自製沸石吸附甲醛上實際應用之操作建議。然本研究主要乃是將沸石製備技術予以開發複合型吸附材料「沸石玻纖濾網」之製備條件及相關因子探討,並進一步評估其特性與實用性。
首先以水熱合成法針對30、50及90分鐘等三種合成條件製備SAR6沸石玻纖濾網,並將其各別進行XRD與SEM分析,XRD結果得不同水熱合成條件造成玻璃纖維上產生之沸石特徵峰強度異同,其中結晶強度又以水熱法加熱50分鐘之沸石玻纖濾網最佳;SEM結果得玻璃纖維上有出現沸石結晶物,由此亦得以確認本研究乃成功將沸石開發成沸石玻纖濾網。爾後將各別沸石玻纖濾網於甲醛250 ppm濃度下進行批次吸附實驗,結果得去除效率以水熱法合成50分鐘>90分鐘>30分鐘;由此得水熱法合成時間影響玻璃纖維表面沸石之結晶強度,進而影響其吸附能力。
本研究以吸附動力式擬合自製沸石玻纖濾網對甲醛之吸附行為,其結果為以擬二階吸附動力模式模擬其吸附行為較擬一階吸附動力模式更為接近實驗值;此外亦可藉由擬二階吸附動力公式來推估在不同甲醛濃度下,自製沸石玻纖濾網對其去除效率與吸附量,提供未來相關複合吸附材料實際應用於室內防制設備之參考依據。
Most people spend as much as 90 % of their time indoors and the studies of human exposure to air pollutants indicate that indoor air levels of many pollutants may be 2-5 times higher than outdoor levels. So indoor air quality (IAQ)has a significant influence on human health. Most of people use method of adsorption to remove volatile organic compounds(VOCs)in indoor. The common absorbent such as activated carbon can adsorb stink and VOCS but it can be adsorbed is limited and easy to influence by aqueous vapor to cause it’s adsorption capacity is bad. Therefore the study self-made zeolite glass filter to remove formaldehyde in indoor and hope promote IAQ.
Before self-made zeolite glass filter, the study will produce four kinds of mix proportion zeolites and conduct adsorption and desorption experiments for formaldehyde. And result compare with commercial zeolites. First adsorption capacity of commercial zeolites is 54 mg/g and second adsorption capacity is 5 mg/g. The regenerate capacity of commercial zeolites is bad. First adsorption capacity of self-made zeolite (35 % Y zeolite+65 % SiO2)is 84 mg/g and second adsorption capacity is 78 mg/g. Self-made zeolite characteristic were analyzes by EDS, BET, XRD analysis. As a result is silicon - aluminum ratio(SAR)of self-made zeolite is 6. Langmuir isotherm is the best description to self-made zeolite adsorb formaldehyde.
To find the best operating conditions for zeolite adsorb formaldehyde, the adsorption processes need to be modeled. The accuracies of the predictions were assessed by comparing them with experimental breakthrough curves. Result is that the difference between the two is very little so the formula accuracies is better. The main research is developing the zeolite into the zeolite glass filter and discussing with making conditions and factor for zeolite glass filter.
The research use hydrothermal synthesis for 30, 50 and 90 min to produce zeolite glass filters. Self-made zeolite glass filters are characterized by XRD and SEM. Result of XRD is different hydrothermal synthesis conditions cause zeolite crystallization difference. Self-made zeolite glass filter which is hydrothermal synthesis for 50 min produce zeolite crystallization is the best. Result of SEM can confirm this research is to succeed in developing the zeolite into the zeolite glass filter. And then take zeolite glass filters of three hydrothermal synthesis conditions conduct batch adsorption experiments for 250 ppm formaldehyde. Result of remove efficiency for formaldehyde is hydrothermal synthesis for 50 min>90 min>30 min. So different hydrothermal synthesis conditions influence intensity of zeolite crystallization and adsorption capacity.
The research use adsorption kinetic model to describe self-made zeolite glass adsorption behavior for formaldehyde. Result is that pseudo-secondorder model is better than pseudo-first-order model. In addition, it can also be by pseudo-secondorder model to estimate remove efficiency and adsorption capacity of self-made zeolite glass filter. Hope it can offer basis to make adsorption materials apply indoor environment in the future.
目錄
中文摘要…………………………………………...i
英文摘要………………………………………….iii
致謝………………………………………………….v
目錄…………………………………………………vi
表目錄………………………………………………ix
圖目錄……………………………………………… x
符號說明………………………………………….xii

第一章 緒論………………………………………………………………...1
1.1 研究源起……………………………………………………………….1
1.2 研究目的……………………………………………………………….2
1.3 研究內容……………………………………………………………….3

第二章 研究背景與相關文獻……………………………………………...5
2.1 室內空氣品質現況 ……………………………………………………5
2.1.1 室內空氣污染物來源與種類 ………………………………..…5
2.1.2 室內污染物之防制設備………………………………………….8
2.2 吸附理論………………………………………………………….....10
2.2.1 吸附種類………………………………………………………...10
2.2.2 沸石的吸附性質………………………………………………...12
2.2.3 等溫吸附方程式………………………………………………...12
2.2.4 吸附動力模式…………………………………………………...19
2.2.5 吸附貫穿曲線…………………………………………………...21
2.2.6 吸附波傳遞理論…………………………………………….....23
2.3 沸石的應用技術……………………………………………………….25
2.3.1 沸石……………………………………………………………...25
2.3.2 沸石分類與型式………………………………………………...27
2.3.3 沸石之應用……………………………………………………...31
2.4 沸石膜………………………………………………………………….34
2.4.1 沸石膜合成方法………………………………………………...35
2.4.2 沸石膜之相關文獻……………………………………………...38

第三章 研究設備及方法……………………………………………….....41
3.1 研究流程……………………………………………………………….41
3.2 實驗設備……………………………………………………………….42
3.3 實驗儀器與器材……………………………………………………….46
3.4 實驗藥品及氣體……………………………………………………….46
3.5 實驗方法……………………………………………………………….47
3.5.1 沸石劑選取……………………………………………………...47
3.5.2 沸石之製備方式……………………..………………………….48
3.5.3 沸石塗佈基材之選取………….……………………………....50
3.5.4 吸附質之選取………………………………………..………….52
3.6 分析方法……………………………………………………………….53
3.6.1 濃度分析……………………...…………………………………53
3.6.2 沸石分析方法原理與應用……………..……………………….55

第四章 結果與討論…………………………………………………….....59
4.1 自製沸石…………… …………………………………..………….59
4.1.1 自製沸石之掺配條件……………………………………….…..59
4.1.2 不同配比沸石之單成分吸附結果……………………...………60
4.2 沸石特性分析………………………………………………………….63
4.2.1 EDS分析………………………………………………………....63
4.2.2 BET分析………………………………………………………....63
4.2.3 XRD分析………………………………………………………....64
4.3 單成分吸附實驗……………………………………………………….66
4.3.1 沸石等溫吸附實驗分析結果…………………………………...66
4.3.2 吸附模式之推導………………………………………………...69
4.4 自製沸石玻纖濾網之特性分析……………………………………….73
4.3.1 XRD分析………………………………………………………....73
4.3.2 SEM分析………………………………………………………....74
4.4 自製沸石玻纖濾網吸附甲醛之研究………………………………….77
4.4.1 沸石玻纖濾網經前處理及未前處理之比較…………………...77
4.4.2 不同合成條件製法對甲醛之吸附探討………………………...79
4.4.3 吸附動力式探討……….………………………………………....80

第五章 結論與建議…………………………………………………….....85
5.1 結論…………………………………………………………………...85
5.2 建議…………………………………………………………………...87

第六章 參考文獻……………………………………………………….....88

附錄一…………………………………………………………………….....92
附錄二…………………………………………………………………….....93
參考文獻
Bein, T. “Synthesis and Applications of Molecular Sieve Layers and
Membranes,” Chem Mater, Vol. 8, No. 8, pp. 1636-1653, 1996.
Geus, E. R., M. J. Exter and H. Bekkum, “Synthesis and characterization of
zeolite (MFI) membranes on porous ceramic supports,” J Chem Soc Faraday
Trans, pp. 3101-3109, 1992.
Gouzinis, A. and M. Tsapatsis, “On the preferred orientation and
microstructural manipulation of molecular sieve films prepared by secondary
growth,” Chem Mater, vol. 10, pp. 2497-2504, 1998.
Hisanaga, T. and K. Tanaka, “Photocatalytic degradation of benzene on zeolite-
incorporated TiO2 film,” Journal of Hazardous Materials, pp. 331-337, 2002.
Ichiura, H., T. Kitaoka, and H. Tanaka, “Removal of indoor pollutants under
UV irradiation by a composite TiO2–zeolite sheet prepared using a
papermaking technique,” Chemosphere, Vol. 50, pp. 79-83, 2002.
Ichiura, H et al. “Influence of uniformity of zeolite sheets prepared using a
papermaking technique on VOC adsorptivity,” Advances in Environmental
Research, Vol. 7, pp. 975-979, 2003.
Kim, W. J., M. C. Lee and D. T. Hayhurst, “Synthesis of ZSM-5 at low
temperature and atmospheric pressure in a pilot-scale batch reactor,”
Microporous and Mesoporous Materials, Vol. 26, pp. 133-141, 1998.
Koegler, J. H., H. van Bekkum, and J.C. Jansen, “Growth model of oriented
crystals of zeolite Si-ZSM-5,” Chemical industry and engineering, Vol. 19,
pp. 262-269, 1997.
Krishnan, K. A. and T. S. Anirudhan, “ Removal of mercury (II) from aqueous
solutions and chlor-alkali industry effluent by steam activated and
sulphurised activated carbon prepared from bagasse pith: kinetics and
equilibrium studies,” J Hazard Mater, pp.161-183, 2002.
Larlus, O., et al., “Preparation of silicalite-1/glass fiber composites by
one-and two-stpe hydrothermal syntheses,” Microporous and Mesoporous
Material, Vol. 56, pp. 175-184, 2002.
Lovallo, M. C., A. Gouzinis and M. Tsapatsis, “Synthesis and characterization
of oriented MFI membranes prepared by secondary growth,” AIChE Journal, Vol.
44, pp. 1903-1913, 1996.
Metcalf and Eddy, Wastewater engineering treatment and resuse, 4th Edition,
McGraw-Hill, New York, 2003.
Namasivayam, C. N. and K. Kadirvelu, “Uptake of mercury (II) from wastewater
by activated carbon from an unwanted agricultural solid by-productcoirpith,”
Carbon, vol. 37, pp. 79-84, 1999.
Obee, T. N. and R. T. Brown, “TiO2 Photocatalysis for Indoor Air Applications:
Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of
Formaldehtde, Toluene, and 1,3-Butadiene,” Environmental Science and
Technology, vol. 29, pp. 1223-1231, 1995.
Rouquerol, F., J. Rouquerol and K. Sing, Adsorption by powders & porous
solids, Academic Press, 1999.
Ruthven, D. M., Principles of adsorption and adsorption Process, John Wiley &
Sons, Inc., New York, 1984.
Sterte, J., et al., “The synthesis of discrete colloidal particles of TPA-
silicalite-1,” Zeolites, vol. 14, pp. 557-567, 1994.
Tosheva, L. and V. Valtchev, “Silicalite-1 crystallization on glass fiber
filter discs,” Microporous and Mesoporous Materials, vol. 81, pp. 11-18,
2005.
Weber, W. J. and F. A. Digiano, Process dynamics in environmental
systems, John Wiley & Sons, Inc., New York, 1996.
Wu, C. C., et al., “Generation of Negative Air Ions Using Electric Silent
Discharge,”in The 2003 Conference on Aerosol Science and Technology, 2003.
Xu, W. Y., et al., “A novel method for the preparation of zeolite ZSM-5,”
Chem Commun , 1990.
一般場所室內空氣品質參考標準建議值草案,環保署,2005。
王盛民,“新世代的綠色產品-光催化觸媒”,化工資訊,2000。
市售家用室內空氣清淨機功能測試結果,消基會,2004。
白矄綾,操作績效自我評估管理制度手冊,2002。
汪健民等人,材料分析,中國材料科學學會,1998。
呂理平、呂維明、陳成慶,單元操作,新文京開發出版有限公司,1992。
林敬二、林宗義,儀器分析(下冊),四版,美亞書版股份有限公司,台北市,1994。
吳榮宗,工業觸媒概論,國興出版社,1989。
吳俊星,李逸先,陳嘉明,“波傳遞理論與應用介紹”,化工,第50卷,第5期,2003。
陳璽翔,“發展自製沸石去除室內空氣污染物甲醛之去除效率與影響機制”,國立雲林科
技大學環境與安全衛生工程研究所,碩士論文,2006。
黃正義、陳王琨,空氣污染防制學,淑馨出版社,1997。
黃玄昇,“利用氫、矽、鋁之ㄧ維和二維固態核磁共振法研究沸石ZSM-5中之鋁原子位點和
酸性位點之分佈”,國立中山大學化學研究所,碩士論文,2003
黃振家,“活性碳織布之吸附應用”,化工,第46卷,第4期,頁112-119
,1999。
謝其德,“室內空氣清淨機去除甲醛之效能評估”,國立台北科技大學環境
規劃與管理研究所,碩士論文,2004。
顏秀慧,“沸石對揮發性有機物吸附行為之研究”,國立台灣大學環境工程學研究所,博
士論文,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top