跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐于舜
研究生(外文):Yu-Shun Shu
論文名稱:連續流式高級氧化系統處理水中偶氮染料MX-5B之研究
論文名稱(外文):Decomposition of aqueous azo dye MX-5B in a continuous reactor by advanced oxidation processes
指導教授:郭昭吟郭昭吟引用關係
指導教授(外文):Chao-Yin Kuo
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:149
中文關鍵詞:紫外光臭氧錳氧化物連續系統偶氮染料
外文關鍵詞:continuous systemO3UV lightMnO2Mn(Ⅱ)C
相關次數:
  • 被引用被引用:10
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:2
本研究以連續式系統運用O3、UV/O3/TiO2、O3/Mn(Ⅱ)與O3/MnO2等程序進行水中偶氮染料MX-5B(C.I. Reactive Red 2)色度與總有機碳去除之研究,研究主要目的為探討紫外光與臭氧耗能、溶液pH值、觸媒添加劑量等因子與污染物的去除效率及反應性的影響。
在連續式氣泡管柱系統UV/O3/TiO2程序中,增加O3能量可明顯促進系統之反應速率,惟酸鹼環境的改變對系統的去除率有較大的影響。而UV能量與酸鹼環境的改變對系統色度去除效能影響較小。O3/MnO2程序中,當增加MnO2添加劑量可以有效增加系統的效能,在酸性情況下之反應速率常數為O3程序的1.8倍。而O3/Mn(Ⅱ)程序中,在酸性情況下的反應速率常數為O3程序的5倍。在添加乙醇實驗結果探討後顯示UV/O3/TiO2與O3/Mn(Ⅱ)程序中,主要氧化反應為氫氧自由基外,還證實包括電洞、臭氧、Mn(Ⅲ)與Mn(Ⅳ)等反應機制。
在反應效率研究中顯示,當水力停留時間為0.66 分鐘時,UV/O3/TiO2、O3/Mn(Ⅱ)、與O3/MnO2程序,對於染料色度去除率分別為71 %、100 %與76 %,而反應速率分別為0.764 min-1、3.896 min-1與1.397 min-1。顯示以均相O3/Mn(Ⅱ)程序,有效增加其系統反應速率。
This study was to improve the decoloration and TOC removal of aqueous azo dye C. I. Reactive Red 2 (MX-5B) by O3, UV/O3/TiO2, O3/Mn(Ⅱ) and O3/MnO2 in a continuous bubble column reactor. The parameters of this study such as UV light, ozone power, pH, catalyst dosage and virous reactive oxidants were examined.
The degradation of dye increased with increasing ozone power on UV/O3/TiO2 in a continuous bubble column reactor, however, UV light and pH did not sinificatly enhance the the decoloration ability. In O3/MnO2 processes, the drgeadation effect increased with increasing the concentration of MnO2. Under acidic condition, the reaction rate constant in the decoloration of azo dye with O3/MnO2 system was 1.8 times higher than that of in O3 with the same concentration of ozone. In addition, in O3/Mn(Ⅱ) system, the reaction rate constant in the decoloration of azo dye was 5 times higher than that of in O3 system. The result of inhibitive effect of ethanol was indicated that hydroxyl radicals played a significant role and comprehends the others oxidants such us positive holes (h+VB), ozone, Mn(Ⅲ), Mn(Ⅳ).
In UV/O3/TiO2, O3/MnO2 and O3/Mn(Ⅱ)systems, when residence time of aqueous dye was 0.66 min, degradation effect was 71, 76, and 100%, and the rate constants of first-order reaction were 0.764, 1.397, and 3.896 min-1. Summing up, the experimental result showed dissolved Mn ions strongly enhanced by homogeneous catalytic mechanisms.
目錄
目錄 i
表目錄 iv
圖目錄 vi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 1
1-3 研究內容 2
第二章 文獻回顧 4
2-1 染整廢水介紹 4
2-1-1 染料現況 4
2-1-2 本研究染料基本特性 4
2-2 臭氧相關特性 5
2-2-1 臭氧的物理化學性質 5
2-3 臭氧反應機制與影響因子 6
2-3-1 pH對O3程序之影響 9
2-3-2 UV光對O3程序影響 11
2-3-3 H2O2對O3程序影響 12
2-4 UV/TiO2程序之相關文獻 13
2-4-1 UV/TiO2反應機制與影響因子 13
2-4-1-1 TiO2劑量之影響 15
2-4-1-2 H2O2之影響 16
2-4-1-3 乙醇之影響 19
2-5 金屬觸媒臭氧氧化程序相關文獻 19
2-5-1 離子型觸媒 20
2-5-2 固體型觸媒 26
2-6 批式與連續式反應器應用相關文獻 28
第三章 實驗方法與設備 32
3-1 實驗架構 33
3-2 實驗反應裝置 34
3-2-1 批式反應設備圖 34
3-2-2 連續式反應設備圖 36
3-2-3 實驗設備裝置 39
3-2-4 實驗藥品 40
3-3 實驗試程 40
3-4 實驗操作步驟 44
3-4-1 批式反應槽系統 44
3-4-2 連續式氣泡管柱系統 47
3-5 樣品分析之品保與品管(QA/QC) 52
3-5-1 樣品分析 52
3-5-2 方法偵測極限(Method Detection Limit, MDL) 53
3-5-3 樣品管制圖建立 56
第四章 結果與討論 60
4-1 批式反應系統 60
4-1-1 不同氧化程序之影響 60

4-2 連續式反應系統 66
4-2-1 O3程序 66
4-2-2 UV/O3/TiO2程序,去除染料廢水之影響 72
4-2-3 觸媒臭氧化程序 82
4-2-3-1 均相反應程序 85
4-2-3-2 異相反應程序 96
4-3 均相與異相程序之比較 101
第五章 結論與建議 110
5-1 結論 110
5-2 建議 111
參考文獻 113
附錄 125



表目錄
表2-1 C.I. Reactive Red 2 化學結構與特性 5
表2-2 有機物與臭氧和OH間的反應速率 8
表2-3 pH影響臭氧氧化程序之相關文獻 10
表2-4 pH對觸媒臭氧系統之相關文獻 22
表2-5 觸媒應用相關文獻 25
表2-6 固體觸媒應用相關文獻 28
表2-7 批式反應器應用相關文獻 29
表2-8 連續式反應系統應用相關文獻 30
表3-1 儀器編號表 36
表3-2 儀器編號表 39
表3-3 實驗操作變因 41
表3-4 批式實驗試程與操作變因 41
表3-5 連續式實驗試程與操作變因 42
表3-6 連續式實驗試程與操作變因 42
表3-7 連續式實驗試程與操作變因 43
表3-8 連續式實驗試程與操作變因 43
表3-9 連續式實驗試程與操作變因 44
表3-10 連續式實驗試程與操作變因 44
表3-11 控制與操作變因之參數表 45
表3-12 控制與操作變因之參數表 46
表3-13 控制與操作變因之參數表 46
表3-14 控制與操作變因之參數表 47
表3-15 控制與操作變因之參數表 48
表3-16 控制與操作變因之參數表 49
表3-17 控制與操作變因之參數表 49
表3-18 控制與操作變因之參數表 50
表3-19 控制與操作變因之參數表 50
表3-20 控制與操作變因之參數表 51
表3-21 C.I. Reactive Red 2七重覆分析表 55
表3-22 TOC七重覆分析表 56
表3-23 TOC重覆分析管制圖之分析結果 58
表4-1 高級氧化降解C.I. Reactive Red 2之反應速率常數表 63
表4-2 各氧化程序之反應速率常數表 108



圖目錄
圖1-1 研究規劃流程圖 3
圖2-1 臭氧之共振態混合體 6
圖2-2 臭氧的反應機制 7
圖2-3 TiO2反應機制 15
圖2-4 錳觸媒臭氧程序的反應機制 21
圖3-1 實驗架構 33
圖3-2 批式反應系統 35
圖3-3 連續式氣泡管柱反應系統 (剖面圖) 37
圖3-4 連續式氣泡管柱 (俯視圖與立體圖) 38
圖3-5 TOC重覆分析管制圖 59
圖4-1 比較高級氧化降解C.I. Reactive Red 2之降解圖 61
圖4-2 C.I. Reactive Red 2經高級氧化降解之pH變化圖 63
圖4-3 去離子水中,液相臭氧濃度變化圖 65
圖4-4 去離子水中,液相臭氧濃度變化圖 65
圖4-5 O3程序對於染料色度變化圖 66
圖4-6 O3程序中,溶液流量對染料廢水之降解圖 68
圖4-7 O3程序中,溶液流量對液相臭氧濃度之變化 68
圖4-8 O3程序中,溶液流量對染料廢水之pH變化圖 69
圖4-9 O3程序中,溶液流量對(a)染料廢水色度與(b)總有機碳去除效率圖 71
圖4-10 UV/TiO2程序對於染料色度變化圖(過濾後) 72
圖4-11 UV/O3/TiO2程序中,UV耗能對染料廢水之降解圖 73
圖4-12 UV/O3/TiO2程序中,UV耗能對染料廢水之pH變化圖 74
圖4-13 UV/O3/TiO2程序中,UV與O3耗能對染料廢水之影響 75
圖4-14 UV/O3/TiO2程序中,UV與O3耗能對染料廢水之pH變化圖 75
圖4-15 UV/O3/TiO2程序中,UV與O3耗能對(a)染料廢水與(b)總有機碳之影響 77
圖4-16 UV/O3/TiO2程序中,二氧化鈦添加量處理染料廢水之降解圖 79
圖4-17 UV/O3/TiO2程序中,TiO2添加量對於染料廢水之pH變化圖 79
圖4-18 UV/O3/TiO2程序中,光波長對染料廢水之降解圖 81
圖4-19 UV/O3/TiO2程序中,UV波長對染料廢水之pH變化圖 81
圖4-20 均相程序色度變化圖 82
圖4-21 均相程序波長掃描圖(過濾) 83
圖4-22 O3/Mn(Ⅱ)程序對於染料色度變化圖(未過濾) 84
圖4-23 O3/Mn(Ⅱ)程序對於去離子水色度變化圖(未過濾) 84
圖4-24 O3程序中,溶液pH對降解染料廢水之降解圖 87
圖4-25 O3程序中,溶液pH對染料廢水之波長吸收掃描圖 87
圖4-26 O3程序中,溶液pH對降解染料廢水之pH變化圖 88
圖4-27 O3程序中,背景溶液pH變化圖 89
圖4-28 O3/Mn(Ⅱ)程序中,溶液pH對染料廢水之降解圖 91
圖4-29 O3/Mn(Ⅱ)程序中,染料廢水之總有機碳降解圖 91
圖4-30 O3/Mn(Ⅱ)程序中,溶液pH對染料廢水之波長吸收掃描 92
圖4-31 O3/Mn(Ⅱ)程序中,溶液pH對染料廢水之pH變化圖 92
圖4-32 O3/Mn(Ⅱ)程序中,背景溶液pH變化圖 93
圖4-33 O3/Mn(Ⅱ)程序中,硫酸亞錳添加量對染料廢水之降解圖 95
圖4-34 O3/Mn(Ⅱ)程序中,硫酸亞錳添加量對染料廢水之波長吸收掃描圖 95
圖4-35 O3/Mn(Ⅱ)程序中,溶液pH對染料廢水之pH變化圖 96
圖4-36 異相程序色度變化圖 97
圖4-37 均相與異相程序波長掃描圖 97
圖4-38 O3/MnO2程序,MnO2添加量對染料廢水之降解圖 99
圖4-39 O3/MnO2程序,染料廢水之總有機碳降解圖 99
圖4-40 O3/MnO2程序,MnO2添加量對染料廢水之波長吸收掃描圖 100
圖4-41 O3/MnO2程序,MnO2添加量對染料廢水之pH變化圖 100
圖4-42 O3/MnO2程序,背景溶液pH變化圖 101
圖4-43 均相與異相程序對水中臭氧濃度變化 104
圖4-44 均相與異相程序,自由基抑制之影響 107
圖4-45 均相與異相程序之pH變化圖 108
參考文獻
英文部分
Addamo, M., Augugliaro, V., Lopez, E. G., Loddo, V., Marcì, G., and Palmisano, L., “Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation,” Catalysis Today, 107-108, 612-618, 2005.

Agustina, T. E., Ang, H. M., and Vareek, V. K., “A review of synergistic effect of photocatalysis and ozonation on waster treatment,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6, 264-273, 2005.

Alaton, I. A., Balcioglu, I. A., and Bahnemann, D. W., “Advanced oxidation of a reactive dyebath effluent:comparison of O3, H2O2/UV-C and TiO2/UV-A processes,” Water Research, 36, 1143-1154, 2002.

Andreozzi, R., Insola, A., Caprio, V., Marotta, R., and Tufano, V., “The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution,” Applied Catalysis A: General, 138, 75-81, 1996.

Andreozzi, R., Caprio, V., Insola, A., Marotta, R., and Tufano, V., “The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese,” Water Research, 32, 1492-1496, 1998.

Andreozzi, R., Casale, M. S. L., Marotta, R., Pinto, G., and Marotta, R., Pinto, G., and Pollio, A., “N-methyl-P- aminophenol (metol) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples,” Water Research, 34, 4419-4429, 2000.

Arslan, I., “Treatability of a simulated disperse dye-bath by ferrous iron coagulation, ozonation, and ferrous iron-catalyzed ozonation,” Journal of Hazardous Materials B, 85, 229-241, 2001.

Balcioglu, I. A., Getoff, N., and Bekbolet, M., “A comparative study for the synergistic effect of ozone on the γ-irradiated and photocatalytic reaction of 4-chlorobenzaldehyde,” Journal of photochemistry and photobiology A:Chemistry, 135, 229-233, 2000.

Beltran, F. J., Rivas, F. J., Espinosa, R. M., “Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor,” Applied Catalysis B: Environmental, 39, 221-231, 2002.

Beltran, F. J., Rivas, F. J., Espinosa, R. M., “Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 2. Heterogeneous catalytic ozonation,” Industrial and Engineering Chemistry Research, 42, 3218-3224, 2003.

Beltran, F. J., Rivas, F. J., and Espinosa, R. M., “Iron type catalysts for the ozonation of oxalic acid in water,” Water Research, 39, 3553-3564, 2005.

Boncz, M. A., Bruning, H., Rulkens, W. H., Sudholter, E. J. R., Harmsen, G. H., and Bijsterbosch, J. W., “Kinetic and mechanistic aspects of the oxidation of chlorophenols by ozone,” Water Science and Technology, 35, 65-72, 1997.

Daneshvar, N., Salari, D., and Khataee, A. R., “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” Journal of Photochemistry and Photobiology A: Chemistry, 157, 111-116, 2003.

Daneshvar, N., Rabbani, M., Modirshahla, N., and Behnajady, M. A., “Photooxidative degration of Acid Red 27 in a tubular continuous-flow photoreactor: influence of operational parameters and mineralization,” Journal of Hazardous Materials B, 118, 155-160, 2005.

Dominguez, J. R., Beltran, J., and Rodriguez, O., “Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82-, O3, H2O2, S2O82-, Fe3+/H2O2, and Fe3+/ H2O2/C2O42-) for dyestreatment,” Catalysis Today, 101, 389-395, 2005.

EI-Raady, A. A., and Nakajima, T., “Decomposition of Carboxylic Acid in Water by O3、O3/H2O2 and O3/Catalyst,” Ozone: Science and Engineering, 27, 11-18, 2005.



EL Ghazi, I., Elamrani, M. K., and Mansour, M., “Photocatalytic oxidation of the textile dye basic red 18 with irradiated titanium dioxide,” Toxicological and Environmental Chemistry, 85, 1-6, 2003.

Raady, A. A. E., and Nakajima, T., “Decomposition of Carboxylic Acid in Water by O3、O3/H2O2 and O3/Catalyst,” Ozone: Science and Engineering, 27, 11-18, 2005.

Faria, P. C. C., Orfao, J. J. M., and Pereira, M. F. R., “Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon,” Water Research, 39, 1461-1470, 2005.

Galindo, C., Jacques, P., and Kalt, A., “Photodegradation of aminoazobenzene acid orange 52 by three advanced oxidation processes:UV/H2O2, UV/TiO2 and VIS/TiO2 comparative mechanistic and kinetic investigations,” Journal of Photochemistry and Photobiology A: Chemistry, 130, 35-47, 2000.

Galindo, C., Jacques, P., and Kalt, A., “Photooxidation of phenylazonaphthol AO20 on TiO2 kinetic and mechanistic investigations,” Chemosphere, 45, 997-1005, 2001.

Gautam, S., Kamble, S. P., Sawant, S. B., and Pangarkar, V. G., “Photocatalytic degradation of 4-nitroaniline using solar and artificial uv radiation,” Chemical Engineering Journal, 110, 129-137, 2005.

Gracia, R., Aragues, J. L., and Ovelleiro, J. L., “Mn(Ⅱ)-catalysed ozonation of raw ebro river water and its ozonation by-products,” Water Research, 32, 57-62, 1998.

Gracia, R., Cortes, S., Sarasa, J., Ormad, P., and Ovelleiro, J. L., “Heterogeneous catalytic ozonation with supported titanium dioxide in model and natural waters,” Ozone: Science and Engineering, 22, 461-471, 2000.

Hassan, M. M., and Hawkyard, C., “Ferral-catalyzed ozonation of aqueous dyes in a bubble-column reactor,” Catalysis Communications, 3, 281-286, 2002.

Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J., “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment,” Applied Catalysis, 46, 639-669, 2003.

Konsowa, A. H., “Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor,” Desalination, 158, 233-240, 2003.

Koch, M., Yediler, A., Lienert, D., Insel, G., and Kettrup, A., “Ozonation of hydrolyzed azo dye reactive yellow 84 (CI),” Chemosphere, 46, 109-113, 2002.


Legube, B., and Leitner, N. K. V., “Catalytic ozonation: a promising advanced oxidation technology for water treatment,” Catalysis Today, 53, 61-72, 1999.

Liakou, S., Kornaros, M., and Lyberatos, G., “Pretreatment of azo dyes using ozone,” Water Science and Technology, 36, 155-163, 1997.

Li, L., Zhu, W., Zhang, P., Chen, Z., and Han, W., “Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet,” Water Research, 37, 3646-3651, 2003.

Malato, S., Blanco, J., Richter, C., Braun, B., and Maldonado, M. I., “Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species,” Applied Catalysis B: Environmental, 17, 347-356, 1998.

Ma, J., and Graham, N. J. D., “Degradation of atrazine by manganese-catalysed ozonation-influence of humic substances,” Water Research, 33, 785-793, 1999.

Ma, J., and Graham, N. J. D., “Degradation of atrazine by manganese-catalysed ozonation-influence of radical scavengers,” Water Research, 34, 3822–3828, 2000.

Ma, J., Sui, M., Zhang, T., and Guan, C., “Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene,” Water Research, 39, 779-786, 2005.

Muthukumar, M., and Selvakumar, N., “Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation,” Dyes and Pigments, 62, 221-228, 2004.

Oguz, E., Keskinler, B., and Celik, Z., “Ozonation of aqueous Bomaplex Red CR-L dye in a semi-batch reactor,” Dye and Pigment, 64, 101-108, 2005.

Pena, M., Coca, M., Gonzalez, G., Rioja, R., and Garcia, M. T., “Chemical oxidation of wastewater from molasses fermentation with ozone,” Chemosphere, 51, 893-900, 2003.

Piera, E., Calpe, J. C., Brillas, E., Domènech, X., and Peral, J., “2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems,” Applied Catalysis B: Environmental, 27, 169-177, 2000.

Polo, M. S., Utrilla, J. R., and Gunten, U. V., “Metal-doped carbon aerogels as catalysts during ozonation processes in a aqueous solutions,” Water research, 40, 3375-3384, 2006.


Sanchez, L., Peral, J., and Domenech, X., “Aniline degradation by combined photocatalysis and ozonation,” Applied Catalysis, 19, 59-65, 1998.

Sauer, T. P., Casaril, L., Oberziner, A. L. B., Jose, H. J., Moreira, R. F. P. M., “Advanced oxidation processes applied to tannery wastewater containing direct black 38-Elimination and degradation kinetic,” Journal of Hazardous Materials B, 135, 274-279, 2006.

Sauleda, R., and Brillas, E., “Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light,” Applied Catalysis B: Environmental, 29, 135-145, 2001.

Shu, H. Y., and Chang, M. C., “Decolorization effect of six azo dye by O3,UV/O3 and UV/H2O2 processes,” Dyes and Pigments, 65, 25-31, 2005.

Soares, O. S. G. P., Orfao, J. J. M., Portela, D., Vieira, A., and Pereira, M. F. R., “Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters,” Journal of Hazardous Materials B, 137, 1664-1673, 2006.

So, C. M., Cheng, M. Y., Yu, J. C., and Wong, P. K., “Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation,” Chemosphere, 46, 905-912, 2002.


Sun, Z., Chen, Y., Ke, Q., Yang, Y., and Yuan, J., “Photocatalytic degradation of cationic azo dye by TiO2/bentonite nano- composite,” Journal of Photochemistry and Photobiology A: Chemistry, 149, 169-174, 2002.

Swaminathan, K., Pachhade, K., and Sandhya, S., “Decomposition of a dye intermediate, (H-acid) 1 amino-8-naphthol-3,6 disulfonic acid in aqueous solution by ozonation,” Desalination, 186, 155-164, 2005.

Thiruvenkatachari, R., Kwon, T. O., and Moon, L. S., “Degradation of Phthalic Acids and Benzoic Acid from Tereph- thalic Acid Wastewater by Advanced Oxidation Processes,” Journal of Enviromental Science and Health Part A, 41, 1685-1697, 2006.

Tong, S. P., Liu, W. P., Leng, W. H., and Zhang, Q. Q., “Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water,” Chemosphere, 50, 1359-1364, 2003.

Tong, S. P., Xie, D. M., Wei, H., and Liu, W. P., “Degradation of Sulfosalicylic Acid by O3/UV O3/TiO2/UV, and O3/V-O/TiO2 : A Comparative Study,” Ozone :Science and Engieering, 27, 233-238, 2005.

Tosik, R., “Dyes color removal by ozone and hydrogen peroxide some aspects and problems,” Ozone :Science and Engieering, 27, 265-271, 2005.


Wu, C. H., “Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems,” Chemosphere, 57, 601-608, 2004.

Wu, C. H., and Chang,C. L., “Decolorization of reactive red 2 by advanced oxidation processes: comparative studies of homogeneous and heterogeneous systems,” Journal of Hazardous Materials B128, 265-272, 2006.

Wu, J., and Wang, T., “Ozonation of aqueous azo dye in a semi-batch reactor,” Water Research, 35, 1093-1099, 2001.

Yong, K., Wu, J., and Andrews, S., “Heterogeneous catalytic ozonation of aqueous reactive dye,” Ozone :Science and Engineering, 27, 257-263, 2005.

Zhu, X. F., and Xu, X. H.,“The mechanism of Fe(Ⅲ)-catalyzed ozonation of phenol,” J Zhejang Univ. SCI., 5, 1543-1547, 2004.








中文部分
曾裕森,“在臭氧程序中添加二氧化鈦及二氧化錳對處理甲酚水溶液之影響”,國立台灣科技大學化學工程系,碩士論文,2004。

潘三德、黃冠潁、林國雄、陳世裕、趙慶光、江鴻龍, “污泥衍生吸附材料處理染整業廢水之研究”,第二十八屆廢水處理技術研討會論文集,台中市(2003)。

徐永錢、楊顯整, “新型捲氣式反應器研究臭氧處理混合兩種酚類水溶液及其後續生物處理性”, 第二十八屆廢水處理技術研討會論文集,台中市(2003)。

蘇弘毅、謝文彬、范煥榮, “以UV/H2O2光催化反應處理染料製造業廢水之可行性與氯鹽抑制效應研究”, 第二十八屆廢水處理技術研討會論文集,台中市(2003)。

許榮桀、謝政育、吳志超、吳俊哲, “臭氧氧化處理自來水產生醛酮類副產物之研究”, 第二十八屆廢水處理技術研討會論文集,台中市(2003)。

申永順、王冠中、張雅婷, “以連續迴流式紫外線過氧化氫程序處理含異丙醇廢水之光反應器設計研究”, 第二十八屆廢水處理技術研討會論文集,台中市(2003)。

顧洋、曾裕森、賴竺均, “在臭氧程序中添加二氧化鈦及二氧化錳處理含甲酚水溶液之研究”, 第二十九屆廢水處理技術研討會論文集,台南市(2004)。

吳建一、周怡君、黃思篿、林雅純、郭威延、賴彥呈, “在連續厭氧–好氧生物處理系統內利用固定化菌體顆粒同時去除染整廢水之COD及色度之研究”,第二十九屆廢水處理技術研討會論文集,台南市(2004)。

吳致誠、謝永旭、劉謹銓、邱奕霖, “UV/TiO2程序中氫氧自由基之生成研究,” 第三十屆廢水處理技術研討會論文集,中壢市(2005)。

曾迪華、范姜仁茂, “反應性恩酉昆染料Reactive Blue 19臭氧化降解之探討”, 第三十一屆廢水處理技術研討會論文集,台中市(2006)。

毛玉麟、吳政恩、經濟部工業局、台灣產業服務基金會,“染料工業”,工業減廢技術手冊,民國 84年 5月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊