跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林傳倫
研究生(外文):Chuan-Lun Lin
論文名稱:微波水熱法與傳統高溫法製備再生奈米氧化銅之比較研究
論文名稱(外文):Comparison of microwave hydrothermal and traditional thermal method to recovery copper oxides from waste liquid
指導教授:郭昭吟郭昭吟引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:133
中文關鍵詞:氧化銅微波水熱法熟化氧化劑傳統高溫法
外文關鍵詞:traditional thermal methodmicrowave hydrothermal methodagingoxidantcopper oxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先使用硫酸處理工業含銅污泥,溶出後之含銅廢液來製備再生氧化銅。首先含銅廢液經ICP分析顯示主要的重金屬為銅20020 ppm,接著利用微波水熱法與傳統高溫法將廢液中的銅沉澱、氧化、乾燥及鍛燒後製備成黑色粉末-氧化銅。在XRD定性分析顯示,經標準圖譜比對後證實兩種製程均可成功製備出氧化銅,其最強的波峰為2θ = 35.55及38.7處,並將主峰帶入Scherrer equation方程式中計算氧化銅的理論粒徑中可以得知,本研究所製備出的氧化銅理論粒徑皆都小於100 nm,符合奈米級之氧化銅;在SEM分析結果顯示,利用傳統高溫所製備出來的氧化銅外觀呈現球狀,粉末團結較為明顯,觀測粒徑較大,而利用微波水熱法所製備的氧化銅外觀呈現片狀及柱狀,且微波時間較短,粉末團聚較傳統法少。由粉末中氧化銅成分分析結果顯示微波水熱法製備再生氧化銅之純度最佳,當添加2 M次氯酸鈉氧化劑再經微波水熱程序後,其氧化銅純度可達100 %,因微波水熱程序時系統中其他金屬雜質未形成金屬氧化物,因此可將其過濾去除,大幅提升再生氧化銅之純度。
In this research, the heavy metal waste liquid was from heavy metal sludge of printed circuit board leached by sulphuric acid. Analyzed by the ICP-OES, the copper concentration was 20020 ppm. The heavy metal waste liquid were precipitate, oxide and dry to product copper oxide black powder using microwave hydrothermal and traditional thermal method. The analyzed results showed by XRD, the two main peaks were in 2θ=35.55 and 38.7 and the result indicated that the black powder was copper oxide produced by microwave hydrothermal and traditional thermal methods. Base on the Scherrer equation calculated, the diameter of prepared copper oxide was less than 100 nm as a nano-particle. The prepared copper oxide showed by SEM was sphere shaped using traditional thermal method and slice and pole shaped by microwave hydrothermal method. Due to the energy and treated time using microwave were both less than using traditional thermal methods, the copper oxide powder aggregated unobvious using microwave hydrothermal method. In analyzed the purity of the prepared copper oxide, the microwave hydrothermal method was better than traditional thermal method. While added 2 M NaOCl into heavy metal waste liquid to oxide other meters then using microwave hydrothermal method, the purity of the prepared copper oxide was reached about 100%. The results indicated that added deionized water as a medium in microwave system could release some trace elements to liquid phase and the impurities could not precipitated on the prepared copper oxide.
中文摘要 I
英文摘要 …….Ⅱ
誌 謝 IV
圖 目 錄 Ⅶ
表 目 錄 Ⅹ
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3研究流程 3
第二章 文獻回顧 4
2-1重金屬廢液來源概述 4
2-1-1印刷電路板製程流程 5
2-1-2製程單元 6
2-2氧化銅製備及回收技術回顧 12
2-3 微波原理介紹 30
2-3-1 組成單元 31
2-3-2 微波水熱合成法之應用 33
第三章 實驗材料與方法 40
3-1實驗材料與藥品 40
3-2 實驗儀器設備 41
3-3 氧化銅製備程序 45
3-3-1 重金屬廢液純化程序 46
3-3-2熟化系統 48
3-3-3氧化劑系統 49
3-3-4 氧化銅比例分析程序 50
3-4-2 掃描式電子顯微鏡 52
3-4-3 能量散佈光譜儀 54
3-4-4 感應偶合電漿原子發射光譜儀 55
3-5 樣品分析之品保及品管(QA/QC) 58
3-5-1 樣品分析 58
3-5-2 方法偵測極限(METHOD DETECTION LIMIT, MDL) 58
3-5-3 CU+2品質管制圖之建立 60
第四章 結果與討論 63
4-1 重金屬廢液成分分析 63
4-2 氧化銅晶相分析 63
4-2-1 熟化系統氧化銅晶相結果分析 64
4-2-2 氧化劑系統氧化銅晶相結果分析 70
4-3 氧化銅影像結果分析 75
4-3-1熟化系統氧化銅影像結果分析 75
4-3-2氧化劑系統氧化銅影像結果分析 81
4-4 氧化銅SCHERRER粒徑分析 86
4-4-1 熟化系統氧化銅SCHERRER粒徑分析 86
4-4-2 氧化劑系統氧化銅SCHERRER粒徑分析 88
4-5 氧化銅成分分析 91
4-5-1 熟化系統氧化銅成分結果分析 91
4-5-2 氧化劑系統氧化銅成分結果分析 93
4-5-3 熟化系統氧化銅比例分析 95
4-5-4 氧化劑系統氧化銅比例分析 96
4-6 純化程序結果分析 97
4-6-3 純化程序各金屬結果分析 102
4-7 操作成本分析 103
第五章 結論與建議 105
5-1 結論 105
5-2 建議 106
參考文獻 107
附錄A:氧化銅SCHERRER粒徑 115
附錄B:氧化銅成分比例(EDS) 116
附錄C:氧化銅比例(ICP) 117
附錄D:重金屬標準檢量線 118
附錄E:ICP基本操作程序 120
附錄F:微波處理操作流程 121
Baldassari, S., Komarneni, S., Mariani, E., and Villa, C. (2005) “Microwave-hydrothermal process for the synthesis of rutile,” Materials Research Bulletin, 40, 2014-2020.

Carnes, C. L., and Klabunde, K. J. (2003) “The catalytic methanol synthesis over nanoparticle metal oxide catalysts,” Journal of Molecular Catalysis A: Chemical, 194, 227-236.

Ciminelli, V. S. T., Dias, A., and Braga, H. C. (2006) “Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hydrothermal processing,” Hydrometallurgy, 84, 37-42.

Cruccolini, A., Narducci, R., and Palombari, R. (2004) “Gas adsorption effects on surface conductivity of nonstoichiometric CuO,” Sensors and Actuators B, 98, 227-232.

Chen, D., Shen, G., Tang, K., and Qian, Y. (2003) “Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route,” Journal of Crystal Growth , 254, 225–228.

Cullity, B. D., Elements of x-ray diffraction, London, California, second edition, 284, 1978.

Dierstein, A., Natter, H., Meyer, F., Stephan, H. O., Keopf, C. H., and Hempelmann, R. (2001) “Electrichemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides,” Scripta Mater., 44(8-9), 2209-2212.

Hong, Z. S., Cao, Y., and Deng, J. F. (2002) “A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles,” Materials Letters, 52, 34–38.

Haque, K.E. (1999) “Microwave energy mineral treatment processes–a brief review,” International Journal of Mineral Processing, 57, 1-24.

Huang, L. S., Yang, S. G., Li, T., Gu, B. X., Du, Y. W., Lu, Y. N., and Shi, S. Z. (2004) “Preparation of large-scale cupric oxide nanowires by thermal evaporation method,” Journal of Crystal Growth, 130-135.

Hu, Z., Dong, J., Chen, S., and Peng, S. (1997) “Preparation and characterization of surface-covered nanometer-sized catalyst by carboxylate phase tansfer,” Journal of Colloid and Interface Science, 194, 332-337.

Jandlova, J., Stetanova, T., and Niemczykova, R. (2000) “Recovery of Cu-concentrates form waste galvanic copper sludges,” Hydrometallurgy, 57, 77–84.


Jung, K. S., Kwon, J. H., Son, S. M., Shin, J. S., Lee, G. D., and Park, S. S. (2004) “Characteristics of the copper phthalocyanines synthesized at various conditions under the classical and microwave processes,”Synthetic Metals, 141, 259-264.

Katti, V. R., Debnath, A. K., Muthe, K. P., Kaur, M., Dua, A. K., Gadkari, S. C., Gupta, S. K., and Sahni, V. C. (2003) “Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation,” Sensors and Actuators B, 96, 245-252.

Kniep, B. L., Girgsdies, F., and Ressler, T. (2005) “Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming,” Journal of Catalysis, 236, 34-44.

Kim, K. H., Park, H. C., Lee, S. D., Hwa, W. J., Hong, S. S., Lee, G. D.,
Park, S. S. (2005) “Preparation of submicron nickel powders by
microwave-assisted hydrothermal method,” Materials Chemistry and Physics, 92, 234-239.

Kim, K. Y., Riu, D. H., Kim, S. R., and Kim, B. K. (2002) “Preparation of shape-controlled copper oxide powders fromcopper-containing solution,” Materials Letters, 54, 229–237.

Komarneni, S., Roy, R., and Li, Q. H. (1992) “Microwave-hydrothermal synthesis of ceramic powders,” Materials Research Bulletin, 27, 1393-1405.
Kumar, K.V., Diamant, Y., and Gedanken, A. (2000) “Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates,” Chemical Material, 12(8), 2301–2305.

Liao, X. H., Chen, N. Y., Xu, S., Yang, S. B., and Zhu, J. J. (2003) “A
microwave assisted heatingmethod for the preparation of copper sulfide
nanorods,” Journal of Crystal Growth, 252, 593-598.

Liao, X., Zhu, J., Zhong, W., and Chen, H. Y. (2001) “Synthesis of morphous Fe2O3 nanoparticles by microwave irradiation,” Materials Letters, 50, 341-346.

Liu, Q., Liang, Y., Liu, H., Hong, J., and Xu, Z. (2006) “Solution phase synthesis of CuO nanorods,” Materials Chemistry and Physics, 98, 519–522.

Liu, S. F., Abothu, I. R., and Komarneni, S. (1999) “Barium titanate ceramics prepared from conventional and microwave hydrothermal powders,” Materials Letters, 38, 344-350.

Murugan, A. V., Samuel, V., and Ravi, V. (2006) “Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method,” Materials Letters, 60, 479-480.

Maruyama, T. (1998) “Copper oxide thin plms prepared by chemical
vapor deposition from copper dipivaloylmethanate,” Solar Energy Materials & Solar Cells, 56, 85-92.

Sun, L., Zhang, Z., Wang, Z., Wu, Z., and Dang, H. (2005) “Synthesis and characterization of CuO nanoparticles from liquid ammonia,” Materials Research Bulletin, 40, 1024–1027.

Shaheen, W. M., and Ali, A. A. (2001) “Thermal solid-solid interaction and physicochemical properties of CuO-FeO system,” International Journal of Inorganic Materials, 3, 1073-1081.

Taylor, S. H., Hutchings, G. J., and Mirzaei, A. A. (2003) “The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation,” Catalysis Today, 84, 113-119.

Thostenson, E. T., and Chou, T. W. (1999) “Microwave processing: fundamentals and applications,” Composites: Part A, 30, 1055-1071.

Verma, S., Joy, P. A., Khollam, Y. B., Potdar, H. S., and Deshpande, S. B. (2004) “Synthesis of nanosized MgFe2O4 powders by microwave
hydrothermal method,” Materials Letters, 58, 1092-1095.

Vorobyova, S. A., Lesnikovich, A. I., and Muchinskii, V. V. (1999) “Interphase synthesis and some characteristics of stable colloidal solution of CuO in octane ,” Colloids and Surfaces A, 150(1-3), 297–300.

Vasiliev, R. B., Rumyantseva, M. N., Podguzova, S. E., Ryzhikov, A. S.,
Ryabova, L. I., and Gaskov, A. M. (1999) “Effect of interdiffusion on
electrical and gas sensor properties of CuO/SnO2 heterostructure,Materials Science and Engineering B, 57, 241-246.

Wang, W. W., Zhu, Y. J., Cheng, G. F., and Huang, Y. H. (2006)“Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers,” Materials Letters, 60, 609-612.

Wang, W. Z., Zhan, Y., Wang, X., Liu, Y., Zheng, C., and Wang, G. (2002a)“Synthesis and characterization of CuO nanowhiskers by a
novel one-step, solid-state reaction in the presence of a nonionic surfactant, ” Materials Research Bulletin, 37(6), 1093-1100.

Wang, H., Xu, J. Z., Zhu, J. J., and Chen, H. Y. (2002b) “Preparation of CuO nanoparticles by microwave irradiation, ” Journal of Crystal Growth, 244, 88–94.

Wu, Z., Shao, M., Zhang, W., and Ni, Y. (2004) “Large-scale synthesis of
uniform Cu2Ostellar crystals via microwave-assisted route,” Journal of
Crystal Growth, 260, 490-493.

Xu, C., Liu, Y., Xu, G., and Wang, G. (2002) “Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4,” Material Research Bulletin, 37, 2365-2372.

Xu, J. F., Ji, W., Shen, Z. X., Tang, S. H., Ye, X. R., Jia, D. Z., and Xin, X. Q. (1999) “Preparation and Characterization of CuO Nanocrystals, ” Journal of Solid State Chemistry, 147, 516–519.

Zhu, J., Li, D., Chen, H., Yang, X., Lu, L., and Wang, X. (2004a)“Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method,” Materials Letters, 58, 3324-3327.

Zhu, J., Chen, H., Liu, H., Yang, X., Lu, L., and Wang, X. (2004b) “Needle-shaped nanocrystalline CuO prepared by liquid hydrolysis of
Cu(OAc)2,” Materials Science and Engineering A, 384, 172–176.

Zhu, H. T., Zhang, C. Y., and Yin, Y. S. (2004c) “Rapid synthesis of
copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation,” Journal of Crystal Growth, 270,722-728.

經濟部工業局 (2002),印刷電路板業資源化應用技術手冊,工業局。經濟部工業局 (2000),電路板業環境技術與建制環境管理系統指
引,工業局。

林忠舜 (2003),利用酸鹼中和法製備奈米氧化銅微粒之研究,元智大學化學工程學系,碩士論文。
郭欣怡 (2003),以水溶液沉澱法製備不同形貌的氧化銅研究,國立
新竹師院數理研究所,碩士論文。
胡紹華、蔡敏行、翁林廷(2003),重金屬污泥結晶化之影響因素探
討,重金屬污泥研討會論文集。
林嘉鼎 (2004),利用微波法製備奈米氧化銅之研究,國立台北科技
大學化學工程研究所,碩士論文。
陳崇宇、李茂榮 (2003),微波萃取技術之應用,科儀新知,頁74-82。
陳佩菱 (2001),微波加熱反應法對無機-有機配位高分子之合成與晶
體結構之鑑定,國立中正大學化學研究所,碩士論文。
江右君、蘇炤亘、鄭文鋒 (2006),印刷電路板鑽孔廢料資源化之可行
性研究,2006廢棄物處理技術研討會,環工年會。
傅崇德、蕭蘊華 (2004),環境工程化學,第五版,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top