1.Alt, F. B., “Multivariate quality control,” Encyclopedia of statistical science 6S. Kotz ad N. L. Johnson, eds., John Wiley & Sons, New York (1985).
2.Alwan, L. C., and Radson, D., “ Time-series investigation of subsample mean charts,” IIE Transactions, 24, 66-80 (1992).
3.Box, G.. E. P., Jenkins, G.. M. and MacGregor, J. F., “Some recent advance in forecasting and control, Part II,” Journal of the Royal Statistical Society, Ser.C, 23, 158-179 (1974).
4.Charnes, J. M., “Tests for special causes with multivariate autocorrelated data,” Computers and operations research, 22, 4, 443-453 (1995).
5.Chen, L. H. and Wang, T. Y., “Artificial neural networks to classify mean shifts from multivariate x2 chart signals,” Computer & industrial engineering, 47, 195-205 (2004).
6.Cheng, C. S., “A multi-layer neural network model for detecting changes in the process mean,” Computers and Industrial Engineering, 28, 51-61 (1995).
7.Chinnam, R. B., “Support vector machines for recognizing shifts in correlated and other manufacturing processes,” International Journal of Production Research, 40, 4449-4466 (2002).
8.Fletcher, R., Practical methods of optimization, Wiley, New York (2000).
9.Harris, T. J., and Ross, W. H. “Statistical process control procedures for correlated observations,” The Canadian Journal of Chemical Engineering, 69, 48-57 (1991).
10.Hotelling, H., “Multivariate quality control-illustrated by the air testing of sample bombsights,” in Techniques of Statistical Analysis, eds. C. Eisenhart, M. W, Hastay and W. A. Wallis, New York : McGraw –Hill, 111-184 (1947).
11.Hsu, C. W., and Lin, C. J., “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, 13, 415-425 (2002).
12.Hush, D. R. and Horne, B. G. “Progress in supervised neural networks,” IEEE Signal Processing Magazine, January, 8-39 (1993).
13.Hush, D. R., Salas, J. M. and Horne, B. G. “Error surfaces for multi-layer perceptrons,” IEEE Transactions on System, Man and Cybernetics, 22, 2 (1992).
14.Hwarng, H. B., “Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme,” International Journal of Production Research, 42, 573-595 (2004).
15.Johnson, R. A., and Wichern, D. W., Applied Multivariate Statistical Analysis, Englewood Cliffs, New Jersey (1992).
16.Kalgonda, A. A., and Kulkarni, S. R., “Multivariate quality control chart for autocorrelated processes,” Journal of Applied Statistics, 31, 3, 317-327 (2004).
17.Mahalanobis, P. C., “On the generalized distance in statistics,” Proceedings of the National Institute of Science of India, 12, 49-55 (1936).
18.Mastrangelo, C. M., and Forrest, D. R., “Multivariate autocorrelated processes: data and shift generation,” Journal of Quality Ttechnology, 34, 2, 216-220 (2002).
19.Montgomery, D. C., and Mastrangelo, C. M. “Some statistical process control methods for auto-correlated data,” Journal of Quality Technology, 23, 3, 179-193 (1991).
20.Montgomery, D. C., Introduction to Statistical Quality Control, Wiley, New York (2005).
21.Morrison, D. F., Multivariate statistical methods, McGraw-Hill (1990).
22.NeuralWare Professional II/Plus (1997). Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks Explorer. Pittsburgh: NeuralWare, Inc.
23.Pugh, G. A., “A comparison of neural networks to SPC charts,” Computers and Industrial Engineering, 21, 253-255 (1991).
24.Ribeiro, B., “Support vector machines for quality monitoring in a plastic injection molding process,” IEEE Transactions on Systems, Man, and Cybernetics- Part C: Applications and Reviews, 35, 401-410 (2005).
25.Rodriguez, J. J., Alonso, C. J., and Maestro, J. A., “Support vector machines of interval-based features for time series classification,” Knowledge-Based Systems, 18, 171-178 (2005).
26.Runger, G. C., Alt, F. B., Montgomery, D. C., “Contributors to a multivariate statistical process control signal,” Communications in Statistics- Theory and Methods, 25, 2203-2213 (1996).
27.STATISTICA (2003). Statistica Data Miner. OK: StatSoft, Inc.
28.Sun, R., and Tsung, F., “A kernel-distance-based multivariate control chart using support vector methods,” International Journal of Production Research, 41, 2975-2989 (2003).
29.Surtihadi, J., Raghavachari, M. and Runger, G., “Multivariate control charts for process dispersion,” International Journal of Production Research, 42, 2993-3009 (2004).
30.Timm, N. H., “Multivariate quality control using finite intersection tests,” Journal of Quality Technology, 28, 233-243 (1996).
31.Vapnik, V. N., Statistical learning theory, Wiley, New York (1998).
32.Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, New York (2000).
33.Wardell, D. G., Moskowitz, H. and Plante, R. D. “Control charts in the presence of data correlation,” Management Science, 38, 1084-1105 (1992).
34.Woodall, W. H. and Ncube, M. M., “Multivariate CUSUM quality control procedures,” Technometrics, 27, 285-292 (1985).
35.Zhang, N. F., “A statistical control chart for stationary process data,” Technometrics, 40, 24-38 (1998).
36.Zhang, N. F., “Detection capability of residual control chart for stationary process data,” Journal of Applied Statistics, 24, 475-492 (1997).
37.Zorriassatine, F., and Tannock, J. D. T., “A review of neural networks for statistical process control,” Journal of Intelligent Manufacturing, 9, 209-224 (1998)
38.Zorriassatine, F., Tannock, J. D. T. and O’Brien, C., “Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes,” Computer & industrial engineering, 44, 385-408 (2003).
39.阮冰如,「應用類神經網路與支援向量機於多變量製程變異來源之辨識」,元智大學工業工程與管理所碩士論文,2006。40.楊慧萍,「以類神經網路建立偵測自我相關製程平均值偏移和參數估計之雙邊管制法」,元智大學工業工程與管理所碩士論文,2005。41.蕭宇翔,「應用MTS於非平衡資料分析之穩健性研究-以行動電話檢測流程為例」,國立交通大學工業工程與管理所碩士論文,2005。42.蘇朝墩,品質工程,中華民國品質學會,2002。